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Motivation

System Software Runs
Everywhere

Untrusted

Software errors

$312B cost




Motivation

1
Program testing can be used to

show the presence of bugs, but
never to show their absence. 7

— Edsger Dijkstra



Motivation

[ Complete formal verification is the only
known way to guarantee that a system is y
free of programming errors. ,

— sel 4 [SOSP09]

1 Formal methods are the only reliable way to
achieve security and privacy in computer
systems. J )

—NSF SFM Report[2016]



Formal
Verification

mathematically prove
program meets specitication
under all inputs

under all execution
rule out entire classes of attacks
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System Software Runs
Everywhere

Untrusted

Software errors

$312B cost

Formal

Verification
Challenges?




Challenges: huge proof efforts

=

sel 4 _ D
[SOSP'09] L 7.5k LOC

N 500L0C
Asm

s ynverified

_ {3k LOC
B unverified




Challenges: Compositionality
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Abstraction Gap
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A Complex System
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Challenges: Compositionality

A Complex System

Complete
Verification
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Challenges: Concurrency

fine-grained lock g fine-grained lock

/O concurrency

multi-thread

multiprocessor
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Challenges: Concurrency

fine-grained lock
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Complete
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Contribution

Certified Abstraction Layers

CertiKOS

alm to solve all these challenges



Contribution

Certified Abstraction Layers
untangle

fine-grained lock

<
—>




Certified Abstraction Layers

verity existing systems

build the next generation

system software
designed to be reliable

and secure



Certified Abstraction Layers

verity existing systems

build
certified system software
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Certified Abstraction Layers

verity existing systems

build
certified system software
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System  Verification
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Certified Abstraction Layers

verity existing systems

build
certified system software
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Contribution

Certified Abstraction Layers

verity existing systems

build
certified system software

Certified System Software
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Contribution

MCertiKOS rop1 5]

certified sequential OS kernels
3k C&Asm, 1 py

Certified Interrupt PLDI"6al 0.5 py

Abstraction
Layers

Security [PLDI"160] 0.5 py

MQC2 [0sDI16] [CCAL 2017]

the first formally certified concurrent
OS kernel with fine-grained locks

6.5k C&Asm, 2 py



functional correctness

- liveness
Certified

no stack/integer/buffer
overflow

System
Software

Nno race condition




Trap & Syscall
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Contribution

6.1k LOC

C layers

@ CompCertX

Asm layers S, Asm layers

400 LOC

machine-
checkable proof




Contribution

Proof Assistant

ACM Software

System Award

((
Some of the significant results that were

accomplished using Coq are proofs for
the four color theorem, the development of
CompCert (a fully verified compiler for C),
the development at Harvard of a verified
version of Google's software fault isolation,
and most recent, the fully specified and
verified hypervisor OS kernel CertiKOS.

— ACM




CertiKOS on Landshark, DARPA HACMS



CertiKOS on
Quadcopter
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Certified Sequential Layer [POPL’15]

certified objects

specification of
modules to trust



Certified Sequential Layer [POPL’15]

abs-state

certified objects

specification of
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Certified Sequential Layer [POPL’15]

aps-state certified objects

specification of

orimitives modules to trust



Certified Sequential Layer

module M
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memory



Certified Sequential Layer

implementation




Certified Sequential Layer

specifica

implementation I
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Certified Sequential Layer

specification

implementation = M




Example: Thread Queue

typedef struct tcb { typedef struct tdg {

state s: tcb *head, *tail;
tcb *prev, *next; |} tdq;
} tcb;

tcb tcbp[1024]; tdg* td_queue;

- tcbp|[0] tcbp[1] tcbp|[2]
—R.

implementation
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state s; tcb *head, *tail;
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} tcb;
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tcbp|[0] l tcbp[1] tcbp|[2]
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Example: Thread Queue

typedef struct tcb { typedef struct tdq {

state s; tcb *head, *tail;
tcb *prev, *next; |} tdq;
} tcb;

tcb tcbp[1024]; tdg* td_queue;

tcbp|[0] l tcbp[1] tcbp|[2]

i ‘

implementation




Example: Thread Queue

typedef struct tcb { typedef struct tdq {
state s; tcb *head, *tail;
tcb *prev, *next; |} tdq;
} tcb;
tcb tcbp[1024]; tdg* td_queue;
head tail
tcbp|[0] J tcbp[1] l tcbp|[2]

I {

implementation




Example: Thread Queue

tcb* dequeue(tdg” g) { if ('next) {
tcb *head, *next; g -> head = null;
tcb *I = null; g -> tail = null;
if ('q) return i; } else {
head = g -> headq,; next -> prev = null;
if ("head) return i; g -> head = next;
| = head; }
next = 1 -> next; return I;
}
head tail
tcbp|[0] J tcbp[1] l tcbp|[2]

implementation




Example: Thread Queue

tcb* dequeue(tdg” g) { if ('next) {
tcb *head, *next; g -> head = null;
tcb *I = null; g -> tail = null;
if ('q) return i; } else {
head = g -> headq,; next -> prev = null;
if ("head) return i; g -> head = next;
| = head; }
next = 1 -> next; return I;
}
head tail
tcbp|[0] l tcbp[1] l tcbp|[2]

I
—Rl “

implementation




Example: Thread Queue

tcb* dequeue(tdg” g) { if ('next) {
tcb *head, *next; g -> head = null;
tcb *I = null; g -> tail = null;
if ('q) return i; } else {
head = g -> headq,; next -> prev = null;
if ('"head) return i; g -> head = next;
| = head; }
next = 1 -> next; return I;
}
head tail
tc&p[O] tcbp[1] l tcbp|[2]

R R,

implementation




Example: Thread Queue

specification

Lo

Definition tcbp := ZMap.t state.
Definition td_queue := List Z.




Example: Thread Queue

specification

Lo

tcbp(0) tcbp(1) tcbp(2)

sO

ST

S2

Definition tcbp := ZMap.t state.
Definition td_queue := List Z.

=




Example: Thread Queue

S

necification

Lo

tcbp(0) tcbp(1) tcbp(2)

sO

ST

td_queue

S2

el 0 |-

2 |

nil

Definition tcbp := ZMap.t state.

Definition td_queue := List Z.

=




Example: Thread Queue

specification

td_queue

tcbp(0) tcbp(1) tcbp(2)

L2 s0 s1 s2 1 |::{ 0 |=:| 2 |:: nil

implementation



Example: Thread Queue

specification

td_queue

tcbp(0) tcbp(1) tcbp(2)

L2 s0 s1 s2 1 |::{ 0 |=:| 2 |:: nil

Function dequeue (Q) :=
match g with
| head :: 9" => (', Some head)
| nil => (nil, None)
end. Coqg




Example: Thread Queue

specification

td_queue

tcbp(0) tcbp(1) tcbp(2)

Lo 0l ls1| ls2 0 |::[ 2 |22 nil

Function dequeue (Q) :=
match g with
| head :: 9" => (', Some head)
| nil => (nil, None)
end. Coqg

executable




Simulation Proof

specification

Program Context

= ) = O

Deep
Specification

Lo

L1

implementation



Lo

L1

Deep spec L: captures all we
need to know about [Jover L

Any property about [lcan be
proved using L. alone

No need to look at lagain
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memory management

seg machine

kernel

Trap
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certified sequential kernel
trap
proc
thread
mem

seg machine
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thread
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seg machine
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trap

vim

Trap

VM

PM
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virt

thread
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seg machine

virt




certified hypervisor

Trap

VM

PM

trap

™

vim

MM

proc

virt

thread
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seg machine

virt




MCertiKOS 3k LOC
1 person year

Can boot Linux as a guest

[
TSysCall Layer
(pe, ikern, ihost, ipt, AT, PT, ptp, pbit, kctxp, Htcbp, Htgp, cid, chanp, uctxp, npt, hctx, vmst)

thread_wakeup/kill/sleep/yield | pt_read | get/set uctx | palloc/free | cid_get

sys_chan_send/recv/wait/check | sys vyield | sys get exit reason | sys get eip

sys_check_shadow/pending_event | sys proc_create | sys set seg | sys_inject

sys_get_exit_io_width/port/rep/str/write/eip | sys_set_intcept_int | sys_npt_instr

vmcbinit | pagefault_handler | sys_reg_get/set | sys_sync | sys_run | vm_exit

i}

TSysCall Layer

. .« sys_run/ | PageFault . sys_check/exit/sync mm
| (mm/proc/virt.abs) Vmc’b'mt vym exit | _Handler sys_yield |Y11ect/set/cha{1( proc, p/rlm
4 [ | J
TTrap Layer T I, 7
. . . | vm_run et_ar sys_check/exit/s mm
| (mm/proc/virt.abs) vchblnlt /€ f(.t gset'rregt |¥uect/set chan( proc. prim

-~



Concurrent Framework [OSDI’16]

certified sequential kernel

trap

virt

proc

thread

mem

seg machine

multicore machine




Concurrent Framework [OSDI’16]
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seq machine concurrent layer

CPU-local machine CPUO CPU1 l CPU2 B CPU3

multicore machine
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Concurrent Framework [OSDI’16]

trap

virt

proc

llll il il

thread

mem -
spin-lock

seg machine

CPU-local machine CPUO CPU1 l CPU2 B CPU3

multicore machine




Certified Concurrent Layers

local certitied objects




Certified Concurrent Layers

atomic objects

]

|

logical log

a sequence of events

L4



Certified Concurrent Layers

atomic objects

I i
BRnN L4

logical log
a sequence of events




Certified Concurrent Layers

atomic objects

]

|

|

-H .

logical
a sequence of events
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Certified Concurrent Layers

toshare I W
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Certified Concurrent Layers

I BN
] Lo

fine-grained locking

I
RRRAE L4




Concurrent Framework

I B
A

CPU-local machine CPUO § CPU1 | CPU2 @l CPU3

machine Iiftingﬁ

multicore machine




step O: raw x86 multicore model

|02
oieBlo atom |

CPU1 private y atom >

multicore machine




step O: raw x86 multicore model

non-determinism

cruo- [

CPU1 :

logical log |oa] | 1a]

multicore machine




step O: raw x86 multicore model

non-determinism
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multicore machine




step O: raw x86 multicore model

non-determinism

=

oo R
oracle--ﬂ ---------- |1 |
CPU1 ’

2]

multicore machine




step 1: logical hardware scheduler

CPU1 :
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multicore machine




step 1: logical hardware scheduler

CPU1 :

logical log {o]|0a]|1]|1]| 1:2]|0]

multicore machine




step 1: logical hardware scheduler

\V/ ghs

multicore machine




step 2: push/pull memory model

shared
mem

CPUO

VE hs machine with hardware scheduler

multicore machine




step 2: push/pull memory model
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step 2: push/pull memory model

SVele pul g share g

logical
copy

shared
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CPU1 race condition

VE hs machine with hardware scheduler

multicore machine




step 2: push/pull memory model

push | g
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logical
copy

CPUO pull share

shared
mem
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step 2: push/pull memory model

push | g

logical
copy
!

shared

CPUO pull share

mem

VE hs machine with hardware scheduler

multicore machine




step 3: environment context model

oiBomm 2 atom

VE hs machine with hardware scheduler

multicore machine

machine with push/pull model




step 3: environment context model
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multicore machine

machine with push/pull model




step 3: environment context model

CPU

K1 R Kl R

VE hs machine with hardware scheduler

multicore machine

e ]
machine with push/pull model




step 3: environment context model

oiBomm 2 atom

& [ T (=]

environment context

VE hs machine with hardware scheduler

multicore machine

machine with push/pull model




step 4. remove unnecessary interleaving

® ciom & ol 8 share Spiaied push

CPU i machine CPU j machine
machine with push/pull model

\vi Sh S machine with hardware scheduler
multicore machine CPUO @ CPU1 @ CPU2 | CPU3




step 4. remove unnecessary interleaving

shuffle

oo & puil | share | piale S8 push

CPU i machine CPU j machine
machine with push/pull model

\vi Sh S machine with hardware scheduler
multicore machine CPUO @ CPU1 @ CPU2 | CPU3




step 4. remove unnecessary interleaving

merge

& ciom 2 puil | share | piale s push

CPU i machine CPU j machine
machine with push/pull model

\vi Sh S machine with hardware scheduler
multicore machine CPUO @ CPU1 @ CPU2 | CPU3




Machine Lifting
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seg machine .

seg machine .
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CPU i machine CPU j machine

machine with push/pull model

VE hs machine with hardware scheduler
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Acquire Lock Specification
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Acquire Lock Specification

logical
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Safely T
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oull will
eventually return



Acquire Lock Specification

logical
copy

[ iveness

mutual
exclusion



Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{
uinté4 t = FAI_ticket (i);

while ( get_now (i) I=1)

Ul

pull (i);
}




Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{ ‘
. FAI

while (PRSI () != t)

Ul

2 pull [oF
}




Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{
uinte4 t =g G (i);
wnile (oI | 0! |
{ } - NOW

2 pull [oF
}

| FAI
ticket




Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{
uinte4 t =g G (i);
wnile (oI | 0! |
{ } - NOW

2 pull [oF
}

| FAI

- get |
ticket

"NOW |




Example: Ticket Lock

mutual exclusion +

void acq_lock (uint i)

{
uinte4 t =P ARG (i);
while (PRSI () != t)

Ul

o) pull

}

liveness
FAI get i | get |
‘ticket! |now! | now




Example: Ticket Lock

mutual exclusion +

void acq_lock (uint i)

{

Ul

2 pull [oF

}

uinte4 t =P ARG (i);
while (PRSI () != t)

liveness
CFAL | | get i | get |
‘ticket! |now! | now

oot



Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{ | get | | get I:_—____—]”
uinte4 t =g G (i); . nowi now | | Pu
| FAI |
while (PRSI () != 1) ticket
i unique t

IOU” ();
| | 'I- #CPUs < 264




Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{

Ul

2 pull [oF

}

uinte4 t =P ARG (i);
while (PRSI () != t)

FAI get | get | | .
ticket nowi now I:E—Ell—]
bounded

#CPUSs is bounded
a fair hardware scheduler

lock holders will release lock



Example: Ticket Lock

'acq‘

aCcq_|oCk Euesy
CFAL ] | gét |

acq_lock ‘ ]

" NOW

oot | o]




Example: Ticket Lock

void acq_lock (uint i)

{ bug in the original
WIIZREE " FAl_ticket (O} implementation
while ([eERI (i) %<1 mutual exclusion will be

U] violated when there Is an

= pull [0} integer overflow for t

}
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Example: Shared Thread Queue
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memory IIII
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Example: Shared Thread Queue
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Example: Shared Thread Queue
logical

acq rel
lock gAequetel lock
COopYy
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Example: Shared Thread Queue

deq

shared
memory IIII




Example: Shared Thread Queue
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Thread-Local Machine

void vyield ()

{
uint t = tid();

(t, rda());
uint s = M(rdq());
context_switch (9

}




Thread-Local Machine

Found hard bugs in the popular
IPC OS textbook
[Operating Systems

- Principles and Practice 2011]
CV

thread-local machine

Software Scheduler
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Device Driver [PLDI16°a]

External events

100

Log | || 1L |
Driver Layers Raw Device Obj

Logical CPU




Device Driver [PLDI16°a]

External events Abstract Device Obj

il

Raw Device Obj
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End-to-End Security [PLDI16°b]

trap ma Observation function O

Trap secure specify and prove general
oroc O; security policies with

declassification
.

security-preservation
thread O:- P

simulation
TM |secure
O; non-interference
MM |secure found security-bugs:

sed machine \Oo spawn, palloc,...
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CertiKOS is the first fully certified OS kernel that is done
economically (< 3 person years), proves more properties, runs on
concurrent HW, and is truly extensible

Still very high barriers of entry:
(1) OS kernel development is very difficult

(2) Formal specifications and proofs are hard to build
(3) Need intimate programming language expertise to succeed

These are three completely different communities
Most people can only do one out of the above three.
The Yale team has been working on all three for >15 years



Desktop: Linux, macOS, Windows, ChromeQS, freeBSD, ...
Hypervisor/Cloud: Linux KVM & Docker, VMWare, Xen, ...
Mobile: Android (Linux), iOS, ...

Embedded: Embedded Linux, VxWorks, QNX, LynxOS, ...

All of them are bloated, old, and contain many bugs

Urgently need new OSes for emerging platforms & apps
(loTs, Drones, Self-Driving Cars, Cloud, NetworkOS, Blockchains, ...

N

OS evolution has reached an inflection point:

Need a certified OS that provides security, extensibility, performance,
and can work across multiple platforms.




