: A Breakthrough
toward Hacker-Resistant
Operating Systems

Zhong Shao
Yale University
January 25, 2018

Acknowledgement: Ronghui Gu, Newman Wu, Hao Chen, Jieung Kim, Jeremie Koenig, Vilhelm
Sjoberg, Mengqi Liu, Lionel Rieg, Quentin Carbonneaux, Unsung Lee, Jiyong Shin, David Costanzo,
Tahina Ramananandro, Hernan Vanzetto, Shu-Chun Weng, Zefeng Zeng, Zhencao Zhang, Liang Gu,
Jan Hoffmann, Joshua Lockerman, and Bryan Ford. This research is supported in part by DARPA
CRASH and HACMS programs and NSF SaTC and Expeditions in Computing programs.

¥l

-—
D Desktop Transportation

Mobile Health

/ Applications
OS
’ Hardware

cloud

Aviation

©

Financial Environment

Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you. (0%
complete)

-

NS

o

rd
/,
inancial

Accident

Applications
OS

Hardware

Life

Loss

Environment

Motivation

System Software Runs
Everywhere

Untrusted

Software errors

$312B cost

Motivation

1
Program testing can be used to

show the presence of bugs, but
never to show their absence. 7

— Edsger Dijkstra

Motivation

[Complete formal verification is the only
known way to guarantee that a system is y
free of programming errors. ,

— sel 4 [SOSP09]

1 Formal methods are the only reliable way to
achieve security and privacy in computer
systems. J)

—NSF SFM Report[2016]

Formal
Verification

mathematically prove
program meets specitication
under all inputs

under all execution
rule out entire classes of attacks

Motivation

System Software Runs
Everywhere

Untrusted

Software errors

$312B cost

Formal

Verification
Challenges?

Challenges: huge proof efforts

=

sel 4 _ D
[SOSP'09] L 7.5k LOC

N 500L0C
Asm

s ynverified

_ {3k LOC
B unverified

Challenges: Compositionality

D
C

Abstraction Gap

o

Challenges: Compositionality

A Complex System

Challenges: Compositionality

A Complex System

Challenges: Compositionality

A Complex System

Compiler

Challenges: Compositionality

A Complex System

Complete
Verification

. S a
A\ ~
4 . .~
A3 “n
A 3 S
A Y ~~
A 3 S
A) ~~
A3 ~

'¢' .. ‘. O

A Y

A
-

-

Challenges: Concurrency

fine-grained lock g fine-grained lock

/O concurrency

multi-thread

multiprocessor

Challenges: Concurrency

Challenges: Concurrency

fine-grained lock

<
—>

Complete
Verification

Challenges: New Domain

ki 0

V

System Verification

Challenges: New Domain

ki 0

V

System Verification

Contribution

Certified Abstraction Layers

CertiKOS

alm to solve all these challenges

Contribution

Certified Abstraction Layers
untangle

fine-grained lock

<
—>

Certified Abstraction Layers

verity existing systems

build the next generation

system software
designed to be reliable

and secure

Certified Abstraction Layers

verity existing systems

build
certified system software

Contribution

Certified Abstraction Layers

verity existing systems

build
certified system software

.

System Verification

Contribution

Certified Abstraction Layers

verity existing systems

build
certified system software

System Verification

Contribution

Certified Abstraction Layers

verity existing systems

build
certified system software

Certified System Software

Certified Abstraction Layers

L1 Lo
R
T ¢
L L
L

Certified Abstraction Layers

Certified Abstraction Layers

L1 & Lo L'+ & L’
R1 0 Ro R’10 R0
M [Mo & Mo M- - [
ﬂ Lo ﬂ L%
)|, e)|, e
L1 D Lo Ls || L'+ & L%
R1 0 Ro Ro R’10 R0
M- © A - I - IR
MR . |mEe| ED

Contribution

MCertiKOS rop1 5]

certified sequential OS kernels
3k C&Asm, 1 py

Certified Interrupt PLDI"6al 0.5 py

Abstraction
Layers

Security [PLDI"160] 0.5 py

MQC2 [0sDI16] [CCAL 2017]

the first formally certified concurrent
OS kernel with fine-grained locks

6.5k C&Asm, 2 py

functional correctness

- liveness
Certified

no stack/integer/buffer
overflow

System
Software

Nno race condition

Trap & Syscall

\ J

FIFOBBQ cVv l (“Legend

Lib Mem ELF Ldr
Y \ 4 / Y Console Hardware
APIC

v

. —
VM Monitor Process __pb Page Map —» VMM
E—— { _ . | Data
Timer <*— Scheduler
—— v ‘ PMM :
e PendQ | | SleepQ | Driver
v

<« Thread 3 RdyQ Y
K stack || g v V¥ | AlocThl Serial | Kbd

k_context CurTID = PCPU ' Ticket MCS v ; ; v
—— IContamer Console Buffer | | Video

|
Core 0 Corel Core 8 Heap
LAPIC O LAPIC 1 LAPIC 8

Memory

Per Thread

Kern. Module

VGA
(Video)

Keyboard [==

Contribution

6.1k LOC

C layers

@ CompCertX

Asm layers S, Asm layers

400 LOC

machine-
checkable proof

Contribution

Proof Assistant

ACM Software

System Award

((
Some of the significant results that were

accomplished using Coq are proofs for
the four color theorem, the development of
CompCert (a fully verified compiler for C),
the development at Harvard of a verified
version of Google's software fault isolation,
and most recent, the fully specified and
verified hypervisor OS kernel CertiKOS.

— ACM

CertiKOS on Landshark, DARPA HACMS

CertiKOS on
Quadcopter

Case Study
Build a Certified System

Compiler

User Application

Inter-Process Communication

Scheduling Module |~ JKeyboard
Thread Queue Module Driver

Spin-lock Module
Keyboard CPU 1

Certified Sequential Layer [POPL’15]

certified objects

specification of
modules to trust

Certified Sequential Layer [POPL’15]

abs-state

certified objects

specification of
modules to trust

Certified Sequential Layer [POPL’15]

aps-state certified objects

specification of

orimitives modules to trust

Certified Sequential Layer

module M

-

memory

Certified Sequential Layer

implementation

Certified Sequential Layer

specifica

implementation I

on

Certified Sequential Layer

specification

implementation = M

Example: Thread Queue

typedef struct tcb { typedef struct tdg {

state s: tcb *head, *tail;
tcb *prev, *next; |} tdq;
} tcb;

tcb tcbp[1024]; tdg* td_queue;

- tcbp|[0] tcbp[1] tcbp|[2]
—R.

implementation

Example: Thread Queue

typedef struct tcb { typedef struct tdq {

state s; tcb *head, *tail;
tcb *prev, *next; |} tdq;
} tcb;

tcb tcbp[1024]; tdg* td_queue;

tcbp|[0] l tcbp[1] tcbp|[2]

i ‘

implementation

Example: Thread Queue

typedef struct tcb { typedef struct tdq {

state s; tcb *head, *tail;
tcb *prev, *next; |} tdq;
} tcb;

tcb tcbp[1024]; tdg* td_queue;

tcbp|[0] l tcbp[1] tcbp|[2]

i ‘

implementation

Example: Thread Queue

typedef struct tcb { typedef struct tdq {
state s; tcb *head, *tail;
tcb *prev, *next; |} tdq;
} tcb;
tcb tcbp[1024]; tdg* td_queue;
head tail
tcbp|[0] J tcbp[1] l tcbp|[2]

I {

implementation

Example: Thread Queue

tcb* dequeue(tdg” g) { if ('next) {
tcb *head, *next; g -> head = null;
tcb *I = null; g -> tail = null;
if ('q) return i; } else {
head = g -> headq,; next -> prev = null;
if ("head) return i; g -> head = next;
| = head; }
next = 1 -> next; return I;
}
head tail
tcbp|[0] J tcbp[1] l tcbp|[2]

implementation

Example: Thread Queue

tcb* dequeue(tdg” g) { if ('next) {
tcb *head, *next; g -> head = null;
tcb *I = null; g -> tail = null;
if ('q) return i; } else {
head = g -> headq,; next -> prev = null;
if ("head) return i; g -> head = next;
| = head; }
next = 1 -> next; return I;
}
head tail
tcbp|[0] l tcbp[1] l tcbp|[2]

I
—Rl “

implementation

Example: Thread Queue

tcb* dequeue(tdg” g) { if ('next) {
tcb *head, *next; g -> head = null;
tcb *I = null; g -> tail = null;
if ('q) return i; } else {
head = g -> headq,; next -> prev = null;
if ('"head) return i; g -> head = next;
| = head; }
next = 1 -> next; return I;
}
head tail
tc&p[O] tcbp[1] l tcbp|[2]

R R,

implementation

Example: Thread Queue

specification

Lo

Definition tcbp := ZMap.t state.
Definition td_queue := List Z.

Example: Thread Queue

specification

Lo

tcbp(0) tcbp(1) tcbp(2)

sO

ST

S2

Definition tcbp := ZMap.t state.
Definition td_queue := List Z.

=

Example: Thread Queue

S

necification

Lo

tcbp(0) tcbp(1) tcbp(2)

sO

ST

td_queue

S2

el 0 |-

2 |

nil

Definition tcbp := ZMap.t state.

Definition td_queue := List Z.

=

Example: Thread Queue

specification

td_queue

tcbp(0) tcbp(1) tcbp(2)

L2 s0 s1 s2 1 |::{ 0 |=:| 2 |:: nil

implementation

Example: Thread Queue

specification

td_queue

tcbp(0) tcbp(1) tcbp(2)

L2 s0 s1 s2 1 |::{ 0 |=:| 2 |:: nil

Function dequeue (Q) :=
match g with
| head :: 9" => (', Some head)
| nil => (nil, None)
end. Coqg

Example: Thread Queue

specification

td_queue

tcbp(0) tcbp(1) tcbp(2)

Lo 0l ls1| ls2 0 |::[2 |22 nil

Function dequeue (Q) :=
match g with
| head :: 9" => (', Some head)
| nil => (nil, None)
end. Coqg

executable

Simulation Proof

specification

Program Context

=) = O

Deep
Specification

Lo

L1

implementation

Lo

L1

Deep spec L: captures all we
need to know about [Jover L

Any property about [lcan be
proved using L. alone

No need to look at lagain

seg machine

kernel

seg machine

kernel
Trap

memory management

seg machine

kernel

Trap

PM
™

MM

kernel

el Trap

Trap PM

™

proc MM

thread

™

mem

seg machine

certified sequential kernel
trap
proc
thread
mem

seg machine

Trap

PM

™

MM

trap

Trap

PM
™
MM

proc

virt

thread

mem

seg machine

virt

trap

vim

Trap

VM

PM

™

MM

proc

virt

thread

mem

seg machine

virt

certified hypervisor

Trap

VM

PM

trap

™

vim

MM

proc

virt

thread

mem

seg machine

virt

MCertiKOS 3k LOC
1 person year

Can boot Linux as a guest

[
TSysCall Layer
(pe, ikern, ihost, ipt, AT, PT, ptp, pbit, kctxp, Htcbp, Htgp, cid, chanp, uctxp, npt, hctx, vmst)

thread_wakeup/kill/sleep/yield | pt_read | get/set uctx | palloc/free | cid_get

sys_chan_send/recv/wait/check | sys vyield | sys get exit reason | sys get eip

sys_check_shadow/pending_event | sys proc_create | sys set seg | sys_inject

sys_get_exit_io_width/port/rep/str/write/eip | sys_set_intcept_int | sys_npt_instr

vmcbinit | pagefault_handler | sys_reg_get/set | sys_sync | sys_run | vm_exit

i}

TSysCall Layer

. .« sys_run/ | PageFault . sys_check/exit/sync mm
| (mm/proc/virt.abs) Vmc’b'mt vym exit | _Handler sys_yield |Y11ect/set/cha{1(proc, p/rlm
4 [| J
TTrap Layer T I, 7
. . . | vm_run et_ar sys_check/exit/s mm
| (mm/proc/virt.abs) vchblnlt /€ f(.t gset'rregt |¥uect/set chan(proc. prim

-~

Concurrent Framework [OSDI’16]

certified sequential kernel

trap

virt

proc

thread

mem

seg machine

multicore machine

Concurrent Framework [OSDI’16]

trap
virt . .
contribution
proc | -
thread machine lifting
el certified
seq machine concurrent layer

CPU-local machine CPUO CPU1 l CPU2 B CPU3

multicore machine

Concurrent Framework [OSDI’16]

trap

virt

proc _ _
contribution

thread - | o
machine lifting

me —

certified

sed machine concurrent |ayer

CPU-local machine CPUO CPU1 l CPU2 B CPU3

multicore machine

Concurrent Framework [OSDI’16]

trap

virt

proc

llll il il

thread

mem -
spin-lock

seg machine

CPU-local machine CPUO CPU1 l CPU2 B CPU3

multicore machine

Certified Concurrent Layers

local certitied objects

Certified Concurrent Layers

atomic objects

]

|

logical log

a sequence of events

L4

Certified Concurrent Layers

atomic objects

I i
BRnN L4

logical log
a sequence of events

Certified Concurrent Layers

atomic objects

]

|

|

-H .

logical
a sequence of events

0g

Certified Concurrent Layers

toshare I W

AN

Certified Concurrent Layers

I BN
] Lo

fine-grained locking

I
RRRAE L4

Concurrent Framework

I B
A

CPU-local machine CPUO § CPU1 | CPU2 @l CPU3

machine Iiftingﬁ

multicore machine

step O: raw x86 multicore model

|02
oieBlo atom |

CPU1 private y atom >

multicore machine

step O: raw x86 multicore model

non-determinism

cruo- [

CPU1 :

logical log |oa] | 1a]

multicore machine

step O: raw x86 multicore model

non-determinism

=
of [

] T

CPU1 :
(1a]

multicore machine

step O: raw x86 multicore model

non-determinism

=

oo R
oracle--ﬂ ---------- |1 |
CPU1 ’

2]

multicore machine

step 1: logical hardware scheduler

CPU1 :

2]

multicore machine

step 1: logical hardware scheduler

CPU1 :

logical log {o]|0a]|1]|1]| 1:2]|0]

multicore machine

step 1: logical hardware scheduler

\V/ ghs

multicore machine

step 2: push/pull memory model

shared
mem

CPUO

VE hs machine with hardware scheduler

multicore machine

step 2: push/pull memory model

Vele pul g share o

logical
copy

shared
mem

VE hs machine with hardware scheduler

multicore machine

step 2: push/pull memory model

Vele pul g share o

logical
copy

shared
mem

VE hs machine with hardware scheduler

multicore machine

step 2: push/pull memory model

SVele pul g share g

logical
copy

shared
Qar

CPU1 race condition

VE hs machine with hardware scheduler

multicore machine

step 2: push/pull memory model

push | g

l

logical
copy

CPUO pull share

shared
mem

VE hs machine with hardware scheduler

multicore machine

step 2: push/pull memory model

push | g

logical
copy
!

shared

CPUO pull share

mem

VE hs machine with hardware scheduler

multicore machine

step 3: environment context model

oiBomm 2 atom

VE hs machine with hardware scheduler

multicore machine

machine with push/pull model

step 3: environment context model

VE hs machine with hardware scheduler

multicore machine

machine with push/pull model

step 3: environment context model

CPU

K1 R Kl R

VE hs machine with hardware scheduler

multicore machine

e]
machine with push/pull model

step 3: environment context model

oiBomm 2 atom

& [T (=]

environment context

VE hs machine with hardware scheduler

multicore machine

machine with push/pull model

step 4. remove unnecessary interleaving

® ciom & ol 8 share Spiaied push

CPU i machine CPU j machine
machine with push/pull model

\vi Sh S machine with hardware scheduler
multicore machine CPUO @ CPU1 @ CPU2 | CPU3

step 4. remove unnecessary interleaving

shuffle

oo & puil | share | piale S8 push

CPU i machine CPU j machine
machine with push/pull model

\vi Sh S machine with hardware scheduler
multicore machine CPUO @ CPU1 @ CPU2 | CPU3

step 4. remove unnecessary interleaving

merge

& ciom 2 puil | share | piale s push

CPU i machine CPU j machine
machine with push/pull model

\vi Sh S machine with hardware scheduler
multicore machine CPUO @ CPU1 @ CPU2 | CPU3

Machine Lifting
&

logical log |of| 0a]|1][1]| 1a][o]

seg machine .

seg machine .

CPU-local machine CPU-local machine

CPU i machine CPU j machine

machine with push/pull model

VE hs machine with hardware scheduler

multicore machine

Case Study
Build a Certified System

User Application

Inter-Process Communication

Scheduling Module Keyboard
Thread Queue Module |RDENVET

Spin-lock Module
CPUO Keyboard CPU 1

Case Study

Build a Certified System

User Application
Inter-Process Communication
Scheduling Module - Keyboard

Thread Queue Module Driver

Spin-lock Module

Keyboarad

0

Acquire Lock Specification

logical
copy

Safely T
pull

Acquire Lock Specification

logical
copy

Safely T
pull

oull will
eventually return

Acquire Lock Specification

logical
copy

[iveness

mutual
exclusion

Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{
uinté4 t = FAI_ticket (i);

while (get_now (i) I=1)

Ul

pull (i);
}

Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{ ‘
. FAI

while (PRSI () != t)

Ul

2 pull [oF
}

Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{
uinte4 t =g G (i);
wnile (oI | 0! |
{ } - NOW

2 pull [oF
}

| FAI
ticket

Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{
uinte4 t =g G (i);
wnile (oI | 0! |
{ } - NOW

2 pull [oF
}

| FAI

- get |
ticket

"NOW |

Example: Ticket Lock

mutual exclusion +

void acq_lock (uint i)

{
uinte4 t =P ARG (i);
while (PRSI () != t)

Ul

o) pull

}

liveness
FAI get i | get |
‘ticket! |now! | now

Example: Ticket Lock

mutual exclusion +

void acq_lock (uint i)

{

Ul

2 pull [oF

}

uinte4 t =P ARG (i);
while (PRSI () != t)

liveness
CFAL | | get i | get |
‘ticket! |now! | now

oot

Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{ | get | | get I:_—____—]”
uinte4 t =g G (i); . nowi now | | Pu
| FAI |
while (PRSI () != 1) ticket
i unique t

IOU” ();
| | 'I- #CPUs < 264

Example: Ticket Lock

mutual exclusion + liveness

void acq_lock (uint i)

{

Ul

2 pull [oF

}

uinte4 t =P ARG (i);
while (PRSI () != t)

FAI get | get | | .
ticket nowi now I:E—Ell—]
bounded

#CPUSs is bounded
a fair hardware scheduler

lock holders will release lock

Example: Ticket Lock

'acq‘

aCcq_|oCk Euesy
CFAL] | gét |

acq_lock ‘]

" NOW

oot | o]

Example: Ticket Lock

void acq_lock (uint i)

{ bug in the original
WIIZREE " FAl_ticket (O} implementation
while ([eERI (i) %<1 mutual exclusion will be

U] violated when there Is an

= pull [0} integer overflow for t

}

Case Study
Build a Certified System

User Application

Inter-Process Communication

Scheduling Module Keyboard
Thread Queue Module Driver

Spin-lock Module
CPUO Keyboard CPU 1

Case Study

Build a Certified System

User Application
Inter-Process Communication

Scheduling Module Kevboard

| Thread Queue Module fiver

Spin-lock Module
CPU 0 Keyboard

Example: Shared Thread Queue

local
memory IIII

Example: Shared Thread Queue

local
memory III

Example: Shared Thread Queue

acq

logical
copy

shared
memory

Example: Shared Thread Queue

acq
jock
ony TIT

shared
memory

Example: Shared Thread Queue

logical
copy

shared
memory

acq

lock

l

=]
ock

Example: Shared Thread Queue
logical

acq rel
lock gAequetel lock
COopYy

shared III
memory

Example: Shared Thread Queue

deq

shared
memory IIII

Example: Shared Thread Queue

shared
memory III

Case Study
Build a Certified System

User Application

Inter-Process Communication

Scheduling Module Keyboard
Thread Queue Module Driver

Spin-lock Module
CPUO Keyboard CPU 1

Case Study

Build a Certified System

User Application
Inter-Process Communication

Scheduling Module

Spin-lock Module

Thread-Local Machine

void vyield ()

{
uint t = tid();

(t, rda());
uint s = M(rdq());
context_switch (9

}

Thread-Local Machine

Found hard bugs in the popular
IPC OS textbook
[Operating Systems

- Principles and Practice 2011]
CV

thread-local machine

Software Scheduler

Case Study
Build a Certified System

Compiler

User Application

Inter-Process Communication

Scheduling Module | |Keyboara

Thread Queue Module Driver

Spin-lock Module
CPUO Keyboard CPU 1

Case Study
Build a Certified System

Compiler

User Application

Inter-Process Communication

Scheduling Module -

Thread Queue Module

Spin-lock Module

0

Device Driver [PLDI16°a]

External events

100

Log | || 1L |
Driver Layers Raw Device Obj

Logical CPU

Device Driver [PLDI16°a]

External events Abstract Device Obj

il

Raw Device Obj

Build a Certified System

Compiler

User Application
Inter-Process Communication
Scheduling Module Keyboard

Thread Queue Module Driver
Spin-lock Module

CPU 1

Build a Certified System

Compiler

User Application
Inter-Process Communication
Scheduling Module Keyboard

Thread Queue Module Driver
Spin-lock Module

CPU 1

End-to-End Security [PLDI16°b]

trap ma Observation function O

Trap secure specify and prove general
oroc O; security policies with

declassification
.

security-preservation
thread O:- P

simulation
TM |secure
O; non-interference
MM |secure found security-bugs:

sed machine \Oo spawn, palloc,...

Build a Certified System

Compiler

Inter-Process Communication
____ Keyboard
Driver

CPU 1

CertiKOS is the first fully certified OS kernel that is done
economically (< 3 person years), proves more properties, runs on
concurrent HW, and is truly extensible

Still very high barriers of entry:
(1) OS kernel development is very difficult

(2) Formal specifications and proofs are hard to build
(3) Need intimate programming language expertise to succeed

These are three completely different communities
Most people can only do one out of the above three.
The Yale team has been working on all three for >15 years

Desktop: Linux, macOS, Windows, ChromeQS, freeBSD, ...
Hypervisor/Cloud: Linux KVM & Docker, VMWare, Xen, ...
Mobile: Android (Linux), iOS, ...

Embedded: Embedded Linux, VxWorks, QNX, LynxOS, ...

All of them are bloated, old, and contain many bugs

Urgently need new OSes for emerging platforms & apps
(loTs, Drones, Self-Driving Cars, Cloud, NetworkOS, Blockchains, ...

N

OS evolution has reached an inflection point:

Need a certified OS that provides security, extensibility, performance,
and can work across multiple platforms.

