
Formal Development of the Pip Protokernel

Narjes Jomaa, David Nowak, Paolo Torrini
Joint work with the Pip team

ENTROPY 2018

January 25, 2018

This work is partially supported by the
European Celtic-Plus Project ODSI C2014/2-12.

1 / 49

The Pip protokernel: a brief system overview (David Nowak)

Pip design principles and security properties (Narjes Jomaa)

From the executable specification to C (Paolo Torrini)

2 / 49

The Pip protokernel: a brief system overview (David Nowak)

Pip design principles and security properties (Narjes Jomaa)

From the executable specification to C (Paolo Torrini)

3 / 49

On-Demand Secure Isolation

I This research is part of the European project ODSI.
I Led by Orange
I 1 academic partner: The university of Lille
I 8 industrial partners from France, Romania, and Spain

I In Lille: 3 PhD students and 1 postdoctoral researcher.

I The Pip protokernel is one of the foundations of this project.

I Security protocols are designed on top of Pip.

I Case studies by industrial partners: IoT, M2M, SCADA

I Common Criteria certification
4 / 49

Memory isolation between applications

Why? For safety and security

How? By software (OS kernel), and hardware (MMU, CPU kernel mode)

Correct? Ensured by a formal proof in Coq

Feasible? Yes, by reducing the trusted computing base to its bare bone

reducing the
TCB

⇒ increasing feasibility
of a formal proof

&
reducing the

attack surface

simplifying the
specification language

⇒ increasing feasibility
of verified translation to C

5 / 49

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling

Multiplexing

Virtual Memory Control Switching

Monolithic Kernel

6 / 49

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling

Multiplexing

Virtual Memory Control Switching

Microkernel

6 / 49

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling

Multiplexing

Virtual Memory Control Switching

Exokernel / Hypervisor

6 / 49

From monolithic kernel to the Pip protokernel

Applications

File System Device Drivers

IPC Scheduling

Multiplexing

Virtual Memory Control Switching

The Pip protokernel

6 / 49

Partition tree

Pip organizes the memory into hierarchical partitions.

Example

user space
multiplexer

Linux

p1.1 p1.2 p1.3

FreeRTOS

p2.1 p2.2

kernel space Pip

7 / 49

Partition tree: the point of view of Pip
The contents of each partition is not relevant for Pip.

I Horizontal isolation
Partitions in different subtrees are isolated from each other,
e.g. P1.1 cannot access memory of P1.2 or P2.

I Vertical sharing
A partition has access to the memory of its descendants.

I Kernel isolation
Pip is isolated from all partitions.

user space
Proot

P1

P1.1 P1.2 P1.3

P2

P2.1 P2.2

kernel space Pip

8 / 49

Partition tree: dealing with interrupts

user space
multiplexer

Linux

p1.1 p1.2 p1.3

FreeRTOS

p2.1 p2.2

kernel space Pip

I Software interrupts

I Pip deals with software interrupts to itself,
e.g. FreeRTOS asks Pip to create a new partition.

I Pip forwards other software interrupts to the caller’s parent,
e.g. p1.2 make a system call to Linux.

I Pip forwards hardware interrupts to the root partition,
e.g. a network packet has arrived.

9 / 49

Pip system calls

10 elementary system calls

I Memory management

createPartition creates a child partition

removePartition deletes a child partition

addVaddr lends a memory page to a child

removeVaddr removes a memory page from a child

pageCount the number of needed configuration pages

prepare gives needed configuration pages

collect takes back unused configuration pages

mappedInChild returns the child using a given page

I control switching

dispatch notifies a partition about an interrupt

resume restores the context of a partition

10 / 49

Software layers

 Hardware

Pip Hardware Abstraction Layer (HAL)

Pip service layer

A sub-partition

Root partition

Another sub-partition

A sub-sub-partition Another
sub-sub-partition

Kernel mode

User mode

C and assembly language

Gallina (the language of the Coq proof assistant)

Any language

11 / 49

Applications

I The HAL of Pip has been ported to:

I QEMU (x86)

I x86

I The Galileo board (Intel Pentium-compliant embedded board)

I Kernels ported on Pip

I FreeRTOS: Tasks can be isolated in sibling partitions.

I Linux 4.10.4: More involved because Linux configures MMU.

I Porting a kernel to Pip essentially consists of:

I removing privileged instructions and operations, and

I replacing them with system calls to Pip (paravirtualization).

I Drhystone benchmark: low overhead of 2,6% in terms of CPU cycles

12 / 49

Formal verification

I Formal verification of an executable specification of Pip

Addressed by Narjes Jomaa in the next part of this presentation

I Verified translation of the executable specification into C

Addressed by Paolo Torrini in the final part of this presentation

13 / 49

The Pip protokernel: a brief system overview (David Nowak)

Pip design principles and security properties (Narjes Jomaa)

From the executable specification to C (Paolo Torrini)

14 / 49

Partition tree management

SH1 SH2 LMMU

PDkernel pages

root

P2P1

P3 P4 P5

The configuration of a partition

I Partition descriptor (PD)

I MMU tables

I Shadow 1 (SH1) and Shadow 2 (SH2)

I Linked list (L)

15 / 49

MMU briefly

6

virtual

9 1

physical address

MMU level: 1MMU level: 2 MMU level: 0

address index = offset =3 4 2 1index = index =

0

1

2

3

4

0

1

2

3

4

0

1

2

3

47 8 11

11

11

11

11

5

9

10

11

Figure: MMU with 3 levels of indirection

Data structure of partitions

I MMU structure: Define assigned pages and access control
I Mirror the MMU structure

I Shadow 1: Find out which pages are assigned to children and which pages are used
as a partition descriptor identifier (security)

I Shadow 2: Ease getting back the ownership of assigned pages (efficiency)

I List (L): Ease getting back the ownership of pages lent to the kernel (efficiency)

16 / 49

Pip design principles

(Algorithms)

HAL

Hardware

HAL (model)

State monad

CoqToC

Gallina implementation C implementation

automatic

Platform-
dependent

abstraction

API code
(Algorithms)
API codeImperative style

Hardware access
implementation

Hardware state

I Hardware state: the part that is relevant to model the partition tree
I the partition that is currently active
I the physical memory where Pip stores its own data

I Exclude the use of all objects that would require a GC: lists, trees → Encoding
these structure in physical memory using the HAL

17 / 49

Security properties

18 / 49

The horizontal isolation property
Definition HI s : Prop :=

∀ parent child1 child2 : page,

parent ∈ (partitionTree s)→

child1 ∈ (children parent s) →

child2 ∈ (children parent s) →

child1 6= child2 →

(allocatedPages child1 s) ∩ (allocatedPages child2 s) = Ø.

kernel pages

I Sibling partitions cannot access each others memory.

19 / 49

Hierarchical TCB (vertical sharing)

Definition VS s : Prop :=

∀ parent child : page,

parent ∈ (partitionTree s) →

child ∈ (children parent s) →

(allocatedPages child s) ⊆ (assignedPages parent s).

kernel pages

I All the pages allocated for a partition are included in the pages assigned to its
ancestors

20 / 49

The kernel isolation property

Definition KI s : Prop :=

∀ partition1 partition2 : page,

partition1 ∈ (partitionTree s) →

partition2 ∈ (partitionTree s) →

(ownedPages partition1 s) ∩ (kernelPages partition2 s) = Ø.

kernel pages

I No partition can access to the pages owned by the kernel.

21 / 49

Information flow property

I As a corollary to VS and HI:
Non-influence property for isolated partition was proved

I Abstract information flow model

I Assumption about hardware side effects

22 / 49

Verification approach

23 / 49

Verification approach

Hoare logic on top of the LLI (Low Level Interface) monad
{{Precondition}} Program {{Postcondition}}

I Program: a monadic function (of type LLI A)

I Precondition: a unary predicate on the starting state

I Postcondition: binary predicate on the returned value and on the ending state

Definition hoareTriple {A : Type}
(P : state → Prop) (m : LLI A)
(Q : A → state → Prop) : Prop :=
∀ s , P s → match m s with {{ P }} m {{ Q }}
| val (a, s ’) ⇒ Q a s’
| undef ⇒ False
end.

States that if the precondition holds then

I the postcondition holds; and

I there is no undefined behavior

24 / 49

The need of consistency properties

I We cannot prove the following invariant
{{HI & VS & KI}} API service {{HI & VS & KI}}

I Properties about the Pip’s data structure are missing
I The precondition should be strengthened with consistency properties
I The consistency properties must also be preserved

{{HI & VS & KI & C}} API service {{HI & VS & KI & C}}

I consistency ≈ well-formedness of Pip’s data structures

25 / 49

Example: createPartition invariant

{{HI & VS & KI & C}} createPartition v1 v2 v3 v4 v5 {{HI & VS & KI & C}}

26 / 49

Proceed forward using transitivity (1/2)

{{HI & VS & KI & C}}

perform currentPart := getCurPartition in
perform ptv1FromPD := getTableAddr currentPart v1 nbL in

...
if negb accessv1 then ret false else
writeAccessible ptv1FromPD idxv1 false ;;
...

{{HI & VS & KI & C}}

27 / 49

Proceed forward using transitivity (2/2)

First sub-goal:

{{HI & VS & KI & C}}

getCurPartition

{{HI & VS & KI & C & P currentPart }}

Second sub-goal:

{{HI & VS & KI & C & P currentPart}}

perform ptv1FromPD := getTableAddr currentPart v1 nbL in
...

if negb accessv1 then ret false else
writeAccessible ptv1FromPD idxv1 false ;;

...
{{HI & VS & KI & C}}

28 / 49

Verification overview

Invariants (Qed) line of proof
createPartition (300 loc) ≈ 60000

createPartition + addVaddr (50 loc) ≈ 78000

createPartition + addVaddr + mappedInChild(20 loc) ≈ 78250

Table: Overview of the proof

29 / 49

The Pip protokernel: a brief system overview (David Nowak)

Pip design principles and security properties (Narjes Jomaa)

From the executable specification to C (Paolo Torrini)

30 / 49

Translating to C

Coq executable model and extracted OCaml code:

I needs big runtime environment

I not efficient enough

We need a translation to low level languages:

I HAL: manual implementation in assembly and C

I Service Layer: C code automatically generated from Gallina

I currently compiled by GCC

However: we want a verified translation to CompCert C

I certified compilation

I tail-recursive optimisation

31 / 49

Translating to C

Coq executable model and extracted OCaml code:

I needs big runtime environment

I not efficient enough

We need a translation to low level languages:

I HAL: manual implementation in assembly and C

I Service Layer: C code automatically generated from Gallina

I currently compiled by GCC

However: we want a verified translation to CompCert C

I certified compilation

I tail-recursive optimisation

31 / 49

Pip monadic code (MC)

– Low-level HAL primitives
– Higher-level monadic code (MC)

Fixpoint initVTable timeout shadow1 idx :=

match timeout with

| 0 ⇒ ret tt

| S timeout1 ⇒
perform max := getMaxIndex in

perform res := Index.ltb idx max in

if (res)

then

perform daddr := getDefaultVAddr in

writeVirEntry shadow1 idx daddr ;;

perform nidx := Index.succ idx in

initVTable timeout1 shadow1 nidx

else ...

end.

32 / 49

Translation to C

We use a Haskell-implemented translator (digger) to translate from the Gallina AST of
MC to C.

if then else

;;

perform := in

(MC. F)

sequencing

local binding

conditional

MC

HAL

writeVirEntry

getMaxIndex

...

application

manual translation

code generator

C

C and ASM

33 / 49

Shallow embedding

MC is a shallow embedding, i.e. a semantic representation of a language in Coq, based
on a set of Gallina definitions.

Definition ret : A → LLI A := fun a s ⇒ val (a, s).

Definition bind : LLI A → (A → LLI B) → LLI B :=

fun m f s ⇒ match m s with

| val (a, s’) ⇒ f a s’

| undef a s’ ⇒ undef a s’ end.

perform x := m in e for bind m (fun x => e)

m ;; e for bind m (fun => e)

Value types: bool and subtypes of nat

34 / 49

Sample translation

Example: a function defined in Coq, using the monadic code:

Definition getFstShadow (partition : page) : LLI page :=

perform idx := getSh1idx in

perform idxSucc := Index.succ idx in

readPhysical partition idxSucc.

and its generated translation to C:

uintptr_t getFstShadow (const uintptr_t partition) {

const uint32_t idx = getSh1idx ();

const uint32_t idxSucc = succ (idx);

return readPhysical (partition, idxSucc); }

35 / 49

Problem: generating verified code

 Stronger types Weaker types

GUARNTEE

TRANSLATEOK
OK

OK OK

object
stisfies spec

object may not
satisfy spec

PROBLEMATIC

NO

(e.g. in Coq)

 P’P

(e.g. in C)

General solution: define a semantic translation from weak to strong (w.r.t. types), and reverse
it

However: we do not want to define a semantics of C in Coq, we want to use an existing one
which also provides compilation – CompCert C.

36 / 49

Verified translation: our approach

1. we build a Coq representation of MC as a deep embedding (DEC) and specify
formally its semantics
– operationally, implementing an SOS interpreter
– denotationally, as interpretation of DEC into Gallina

2. use the denotational semantics to verify the translation of Pip into DEC

3. use the operational semantics to verify the translation to CompCert C

37 / 49

Translation through DEC

DEC is defined in terms of abstract datatypes: possible to manipulate it as an object
in Coq – e.g. to define a formal translation from it

if then else

;;

perform := in

(MC. F)

MC

BindN

BindS

IfThenElse

Apply

(HAL. F) Modify

DEC

CompCert C
Haskell tool Coq function

38 / 49

From DEC to MC (in Gallina) and back (in Haskell)

 P’

Coq
Evaluation

(S,V) (S’,V’)

SOS

Interpreter

 P

denotational sem.
DEC MC

DEC2MC

DEC2MC4val

For the two semantics to agree:
for P a DEC program, DEC2MC4val (SOS Int P) = DEC2MC P

Pip = DEC2MC (Haskell MC2DEC Pip)

39 / 49

From DEC to C

BindN

BindS

IfThenElse

Apply

Modify

DEC

(,)

(? :)

()

Ecomma

Ecomma (Eassign)

Econdition

Ecall

Semantic soundness: need for a proof that behaviour is preserved.

Essentially – like adding a compilation step.

40 / 49

DEC expressions

Inductive Exp : Type :=

| Val (v: Value) | Var (x: Id)

| BindN (e1: Exp) (e2: Exp)

| BindS (x: Id) (t: option VTyp) (e1: Exp) (e2: Exp)

| IfThenElse (e1: Exp) (e2: Exp) (e3: Exp)

| Apply (f: Id) (prms: Prms) (fuel: Exp)

| Modify (t1 t2: VTyp) (xf: XFun t1 t2) (prm: Exp)

| BindMS (env: valEnv) (e: Exp)

| Call (f: Id) (prms: Prms)

with Prms : Type := PS (es: list Exp).

Recursive functions terminate (as in MC)

41 / 49

Modules, mutual recursion and side-effects

Parameter Id: Type.

Parameter State: Type.

Inductive Fun : Type :=

FC (formal_prms: list (Id * VTyp) (ret_type: VTyp)

(default: Value) (body: Exp).

Record XFun (dt1 dt2: VTyp) : Type :=

{ x_modify : State → (mcTyp dt1) → State * (mcTyp dt2) }.

42 / 49

Operational semantics (small-step)

φ function environment δ datavalue environement

Static:

` φ :: Φ ` δ :: ∆
Φ; ∆ ` exp :: vtyp Φ; ∆ ` prms :: ptyp
` well typed φ

Dynamic:

φ; δ
 (state, fuel , exp) −→ (state ′, fuel ′, exp′)
φ; δ
 (state, fuel , prms) −→ (state ′, fuel ′, prms ′)

43 / 49

Type soundness (SOS interpreter)

Type soundness for expressions (similarly for parameters):

∀ Φ ∆ exp vtyp, Φ; ∆ ` exp :: vtyp →
∀ φ δ state fuel , ` well typed φ →

` φ :: Φ →
` δ :: ∆ →

Σ! state ′ fuel ′ v ,
φ; δ
 (state, fuel , exp) −→ (state ′, fuel ′, Val v)

Proved in Coq, by double induction on fuel and the mutually defined typing relations.

44 / 49

Operational semantics (Coq code)

Inductive ExpTyping :

list (Id*FTyp) → list (Id*Value) → Exp → VTyp → Type

with PrmsTyping :

list (Id*FTyp) → list (Id*Value) → Prms → PTyp → Type

Inductive FEnv_WT (fenv: list (Id*Fun)) : Type

Inductive AConfig (T: Type) : Type :=

Conf (state: W) (fuel: nat) (qq: T)

Inductive EStep (fenv: list (Id*Fun)) :

list (Id*FCall) → list (Id*Value) →
AConfig Exp → AConfig Exp → Type

with PrmsStep (fenv: list (Id*Fun)) :

list (Id*FCall) → list (Id*Value) →
AConfig Prms → AConfig Prms → Type

45 / 49

Denotational semantics

Θe : Θt funEnv→ Θt valEnv → ∀ e : Exp, ILL State (Θt (τe))

Θe (Val v) = ret (ext v)
Θe VS (Var x) = ret (find x VS)
. . .
Θe FS VS (BindS x e1 e2) = let t = Θt (τe1) in

bind (Θe FS VS e1) (Θe FS ((x , t) :: VS) e2)
. . .
Θe FS VS (Call f prms) =

bind (Θes FS VS prms) (find f FS)
Θe FS VS (Modify xf prm) =

bind (Θe FS VS prm) (x modify xf)

Provable in Coq: the two semantics (operational and denotational) agree

46 / 49

Summarising

Types

Values

(Coq−Gallina)

Types

Values

Compute

Check

(DEC)

programs

programs

MC

SOS REPRESENTATION

META−LANGUAGE

(Pip model)

DEC2MC

Check

Compute

 MC2DEC

(in Haskell)

CompCert C

Types

programs

Values

Compute

Check

X

47 / 49

Documentation

System:
Q. Bergougnoux, N. Jomaa, M. Yaker, J. Cartigny, G. Grimaud, S. Hym, D. Nowak,
Proved Memory Isolation in Real-Time Embedded Systems through Virtualization,
submitted

Formal modelling and verification of security properties:
N. Jomaa, P. Torrini, D. Nowak, G. Grimaud,
Proof-oriented Design of a Separation Kernel with Minimal TCB,
submitted

Translation:
P. Torrini, D. Nowak, DEC: Coq repository, https://github.com/2xs/dec.git
S. Hym, V. Oudjail, Digger: Haskell repository, https://github.com/2xs/digger

48 / 49

https://github.com/2xs/dec.git
https://github.com/2xs/digger

To find out more

http://pip.univ-lille1.fr

The Pip Development Team thanks you for your attention

49 / 49

http://pip.univ-lille1.fr

	The Pip protokernel: a brief system overview (David Nowak)
	Pip design principles and security properties (Narjes Jomaa)
	From the executable specification to C (Paolo Torrini)

