
Verification of the GCC-generated binary
of the seL4 microkernel

Thomas Sewell1, Magnus Myreen2, Gerwin Klein1

1 Data61 CSIRO & UNSW, Australia
2 Chalmers, Sweden

the clever PhD
student who did
the hard part of

the work

today’s speaker (borrowing some slides from Sewell)

ENTROPY 2018 (ENabling TRust through Os Proofs...and beYond), France

L4.verified

seL4 = a formally verified general-
purpose microkernel

about 10,000 lines of C code and assembly

> 500,000 lines of Isabelle/HOL proofs

Assumptions in L4.verified
L4.verified project assumes correctness of:

‣ C compiler (gcc)
‣ inline assembly
‣ hardware
‣ hardware management
‣ boot code
‣ virtual memory

The aim of this work is to remove the first assumption.

‣ Cambridge ARM model

And also to validate L4.verified’s C semantics.

trusted

Aim: extend downwards

detailed model of C code

low-level design

high-level design

...
Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Aim: remove need to trust C compiler and C semantics

...

detailed model of C code

low-level design

high-level design

...
Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Connection to CompCert

CompCert ARM assemblyne
w

 e
xt

en
si

on

seL4 as CompCert C code

CompCert compiler

 manual tweaks
(by Matthew Fernandez)

incompatible

Incompatible:

• different view on
what valid C is

• CompCert C is
more conservative

• pointers & memory
more abstract in
CompCert C sem.

• different provers
(Coq and Isabelle)

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Using Cambridge ARM model

seL4 machine code

ne
w

 e
xt

en
si

on

gcc (not trusted)

machine code as graph

decompilation

refinement proof

Translation validationTranslation Validation

Translation Validation efforts:

• Pnueli et al, 1998. Introduce translation validation. Want to maintain
a compiler correctness proof more easily.

• Necula, 2000. Translation validation for a C compiler. Also wants to
pragmatically support compiler quality.

• Many others for many languages and levels of connection to
compilers.

• . . .

• Sewell & Myreen, 2013. Not especially interested in compilers.
Want to validate a source semantics.

Translation Validation for seL4 Copyright NICTA 2013
Thomas Sewell, Magnus Myreen 4/10

Talk outline

Part 1: proof-producing decompilation

Cambridge ARM model
seL4 machine code

ne
w

 e
xt

en
si

on machine code as graph

decompilation

refinement proof

• C semantics • SMT proof search and proof checking

• examples • complicated cases

• generating functions / graphs

Part 2: pseudo compilation and SMT refinement proof

• stack vs heap

detailed model of C code

Talk

Talk

Cambridge ARM model

• detailed model of the ARM instruction set
architecture formalised in HOL4 theorem prover

• originates in a project on hardware verification
(ARM6 verification)

• extensively tested against different hardware
implementations

developed by Anthony Fox

Web: http://www.cl.cam.ac.uk/~acjf3/arm/

Cambridge ARM model

http://www.cl.cam.ac.uk/~acjf3/arm/

Part 1: decompilation

Cambridge ARM model
seL4 machine code

machine code as functions

decompilation

first version
produced functions;

latest version
produces graphs

Decompilation
Sample C code:

uint avg (uint i, uint j) {
 return (i + j) / 2;
}

HOL4 certificate theorem:

 { R0 i * R1 j * LR lr * PC p }
 p : e0810000 e1a000a0 e12fff1e
 { R0 (avg(i,j)) * R1 _ * LR _ * PC lr }

Resulting function:

avg (r0, r1) = let r0 = r1 + r0 in
 let r0 = r0 >> 1 in
 r0

gcc
(not trusted)

e0810000 add r0, r1, r0
e1a000a0 lsr r0, r0, #1
e12fff1e bx lr

machine code:

decompilation via ARM model
word arithmetic

word right-shift

return instruction

separation logic: *

Decompilation
{ R0 i * R1 j * PC p }
 p+0 :
{ R0 (i+j) * R1 j * PC (p+4) }

{ R0 i * PC (p+4) }
 p+4 :
{ R0 (i >> 1) * PC (p+8) }

{ LR lr * PC (p+8) }
 p+8 :
{ LR lr * PC lr }

{ R0 i * R1 j * LR lr * PC p }
 p : e0810000 e1a000a0 e12fff1e
{ R0 ((i+j)>>1) * R1 j * LR lr * PC lr }

How to decompile:

1. derive Hoare triple theorems
 using Cambridge ARM model

2. compose Hoare triples

3. extract function

avg (i,j) = (i+j)>>1

2

3

(Loops result in recursive functions.)

e0810000 add r0, r1, r0
e1a000a0 lsr r0, r0, #1
e12fff1e bx lr

e0810000
e1a000a0
e12fff1e

• seL4 is ~12,000 ARM instructions (lines of assembly)

• compiled using gcc -O1 and gcc -O2

• must be compatible with L4.verified proof

Decompiling seL4: Challenges

✓ decompilation is compositional

✓ gcc implements ARM+C calling convention

➡ stack requires special treatment

Some arguments are passed on the stack,
 and cause memory ops in machine code

 ... that are not
present in C semantics.

C code:

uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {
 return (x0+x1+x2+x3+x4+x5+x6+x7) / 8;
}

Stack is visible in machine code

add r1, r1, r0
add r1, r1, r2
ldr r2, [sp]
add r1, r1, r3
add r0, r1, r2
ldmib sp, {r2, r3}
add r0, r0, r2
add r0, r0, r3
ldr r3, [sp, #12]
add r0, r0, r3
lsr r0, r0, #3
bx lr

gcc

Use separation-logic inspired approach

stack sp 3 (s0::s1::s2::s3::s4::ss)

_ _ _ s0 s1 s2 s3 s4 ss

stack pointer: sp

{

3 slots of unused but
required stack space

{
rest of stack

m

separation logic: *

* memory m

disjoint due to *

Solution (early version)

add r1, r1, r0
add r1, r1, r2
ldr r2, [sp]
add r1, r1, r3
add r0, r1, r2
ldmib sp, {r2, r3}
add r0, r0, r2
add r0, r0, r3
ldr r3, [sp, #12]
add r0, r0, r3
lsr r0, r0, #3
bx lr

1. static analysis to find
stack operations,

2. derive stack-specific
Hoare triples,

3. then run decompiler as
before.

Method:

➡

➡

➡

Solution

The new triples make it seems as if stack
accesses are separate from the rest of memory.

avg8(r0,r1,r2,r3,s0,s1,s2,s3) =
 let r1 = r1 + r0 in
 let r1 = r1 + r2 in
 let r2 = s0 in
 let r1 = r1 + r3 in
 let r0 = r1 + r3 in
 let (r2,r3) = (s1,s2) in
 let r0 = r0 + r2 in
 let r0 = r0 + r3 in
 let r3 = s3 in
 let r0 = r0 + r3 in
 let r0 = r0 >> 3 in
 r0

Result (early version)

add r1, r1, r0
add r1, r1, r2
ldr r2, [sp]
add r1, r1, r3
add r0, r1, r2
ldmib sp, {r2, r3}
add r0, r0, r2
add r0, r0, r3
ldr r3, [sp, #12]
add r0, r0, r3
lsr r0, r0, #3
bx lr

Stack load/stores become straightforward assignments.

Disadvantage: the automation is trying to prove stack safety

with sometimes too
little information

What about arrays
on the stack?

The new triples make it seems as if stack
accesses are separate from the rest of memory.

avg8(r0,r1,r2,r3,sp,stack) =
 let r1 = r1 + r0 in
 let r1 = r1 + r2 in
 let r2 = stacks(sp) in
 let r1 = r1 + r3 in
 let r0 = r1 + r3 in
 let (r2,r3) = (stack(sp+4),stack(sp+8)) in
 let r0 = r0 + r2 in
 let r0 = r0 + r3 in
 let r3 = stack(sp+12) in
 let r0 = r0 + r3 in
 let r0 = r0 >> 3 in
 r0

Later version

add r1, r1, r0
add r1, r1, r2
ldr r2, [sp]
add r1, r1, r3
add r0, r1, r2
ldmib sp, {r2, r3}
add r0, r0, r2
add r0, r0, r3
ldr r3, [sp, #12]
add r0, r0, r3
lsr r0, r0, #3
bx lr

Stack load/stores become accesses to “stack memory”.

stack heap*In certificate theorems:

results in proof
obligations
higher up

C semantics

Stack and Heap

Aside: Hiding stack accesses mean they must not be aliased.

Our C semantics forbids pointers to the stack.

We also eliminate padding, clearly separating:
• the heap, under user control.
• the stack, under compiler control.

Enables a simple notion of correct compilation:

8(in, in_heap) 2 domain(C). C(in, in_heap) = B(in, in_heap)

This would be difficult with higher level optimisations.

Translation Validation for a Verified OS Kernel Copyright NICTA 2014
Thomas Sewell1, Magnus Myreen2, Gerwin Klein1 11/18

binary (machine
code) semantics

Correct memory after compilation

Other tricky cases

• struct as return value

‣ case of passing pointer of stack location

‣ stack approach is strong enough

• switch statements

‣ position dependent

‣ must decompile linked elf-files, not object files

• infinite loops in C

‣ make gcc produce strange output

‣ must be pruned from control-flow graph

Latest decompiler

• produces a graph instead of a function

‣ functions are good for interactive proofs

‣ graphs seem better for automation here

avg8(r0,r1,r2,r3,sp,stack) =
 let r1 = r1 + r0 in
 let r1 = r1 + r2 in
 let r2 = stacks(sp) in
 let r1 = r1 + r3 in
 let r0 = r1 + r3 in
 let (r2,r3) = (stack(sp+4),stack(sp+8)) in
 let r0 = r0 + r2 in
 let r0 = r0 + r3 in
 let r3 = stack(sp+12) in
 let r0 = r0 + r3 in

Assign r1 := r1 + r0

Assign r1 := r1 + r2

Assign r2 := stack(sp)

Assign r1 := r1 + r3

detailed model of C code

seL4 machine code

ne
w

 e
xt

en
si

on

machine code as graph

automatic translation

refinement proof

Moving to Part 2

Questions about Part 1?

Sydney Harbour Bridge during construction

… before we continue to Part 2

Moving to Part 2

detailed model of C code

seL4 machine code

machine code as graph

automatic translation

refinement proof

Part 2

Approach for refinement proof

detailed model of C code

machine code as graph

C code as graph

 SMT proof

semantics preserving rewriting

detailed model of C code

low-level design

high-level design

...

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

the C semantics is produced on import into Isabelle/HOL

C Program Semantics

Maps syntax of C to a deeply embedded language in
Isabelle/HOL with an operational semantics.

Partial semantics to explain undefined behaviour.

)

)

)

)

Translation Validation for a Verified OS Kernel Copyright NICTA 2014
Thomas Sewell1, Magnus Myreen2, Gerwin Klein1 6/18

partial semantics to account
for undefined behaviour

C Standard Semantics

Aside: Why not just trust the compiler?

The assertion used in is subtle.

The object rule says that a pointers may come from arithmetic within an
object, and .

What about casts from numbers?

There are multiple interpretations of the C language.
•

NICTA seL4: Liberal, portable assembler, soundy.
• Strict aliasing rule but not object rule.

•
CompCert: Conservative.

Translation Validation for a Verified OS Kernel Copyright NICTA 2014
Thomas Sewell1, Magnus Myreen2, Gerwin Klein1 7/18

Why not just trust the C compiler?

Translating C into graphs

 struct node *
 find (struct tree *t, int k) {
1 struct node *p = t->trunk;
2 while (p) {
3 if (p->key == k)
4 return p;
5 else if (p->key < k)
6 p = p->right;
 else
7 p = p->left;
 }
8 return NULL;
 }

Figure 3. Example Conversion of Structure and Statements to Graph Language

are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers

1

2

38

4 5

Ret 6 7

����

��
���

���
���

��
�

���
�

��
���

Figure 3. Example Conversion of Structure and Statements to Graph Language

are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers

1: p := Mem[t + 4];

2: p == 0 ?

8: ret := 0
3: Mem[p] == k ?

4: ret := p;
5: Mem[p] < k ?

6: p := Mem[p + 4];
7: p := Mem[p + 8];

Figure 3. Example Conversion of Structure and Statements to Graph Language

are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers

the ptr_valid assertions are
omitted from the figure

Bridging the gap

detailed model of C code

machine code as graph

C code as graph

 SMT proof

semantics preserving rewriting

latest toolchain designed
to have all of its heuristics

in this step only

Cambridge ARM model
seL4 machine code

decompilation

The SMT proof step

Following Pnuelli’s original translation validation, we
split the proof step:

Part 1: proof search (proof script construction)

Part 2: proof checking (checking the proof script)

The proof scripts consist of a state space description
and a tree of proof rules:
 Leaf, CaseSplit, Restrict, FunCall and Split

The heavy lifting is done by calls to SMT solvers for
both the proof search and checking.

Proof Objects

1

ass_22

N

ass_21

C

ass_2

t_Ret_2

C

ass_3

C

4

T

t_Err_4

F

ass_5

122

C

117

N

ass_6

C

ass_7

t_Ret_7

C

ass_8

C

9

T

t_Err_9

F

10

T

t_Err_10

F

ass_11

C

ass_12

104

C

93

N

ass_13

89

C

45

N

14

T F

ass_15

C

ass_16

C

ass_17

C

ass_18

C

ass_19

C

ass_20

C

C

23

N

ass_24

t_Ret_24

C

ass_25

C

26

T

t_Err_26

F

27

F

37

T

36

T

t_Err_37

F

ass_28

126

C

N

29

T

t_Err_29

F

ass_30

C

31

T

t_Err_31

F

ass_32

C

33

T

t_Err_33

F

ass_34

C

35

T

t_Err_35

F

T F

ass_38

t_Ret_38

C

39

F T

ass_40

C

ass_41

C

42

N

43

N

44

ass_90

N

C

ass_88

N

ass_87

C

ass_46

C

47

T

t_Err_47

F

ass_48

125

N

N

ass_49

N

ass_50

C

ass_51

N

ass_52

C

53

T

t_Err_53

F

ass_54

C

ass_55

C

56

T

t_Err_56

F

ass_57

C

ass_58

C

ass_59

C

ass_60

C

ass_61

C

ass_62

N

ass_63

N

ass_64

C

ass_65

N

ass_66

C

67

T

t_Err_67

F

ass_68

C

ass_69

C

70

T

t_Err_70

F

ass_71

C

ass_72

C

ass_73

C

ass_74

C

ass_75

C

76

T F

ass_77

C

ass_78

C

79

T

t_Err_79

F

ass_80

C

ass_81

C

ass_82

C

83

T

t_Err_83

F

ass_84

C

ass_85

C

86

T F

C

92

ass_105

N

C

ass_103

N

ass_102

C

ass_94

C

ass_95

C

96

T

t_Err_96

F

ass_97

113

C

108

N

ass_98

C

ass_99

C

100

T

t_Err_100

F

ass_101

C

C

107

ass_114

N

C

ass_112

N

111

C

ass_109

C

ass_110

C

T

t_Err_111

F

116

ass_123

N

C

ass_121

N

120

C

ass_118

C

ass_119

C

T

t_Err_120

F

Proof objects contain:
• An inlining of all needed function bodies into

one space.
•

Restrict rules, which observe that a given
point in a loop may be reached only n times.

•
Split rules, which observe that a C loop point
is reached as often as a loop point in the
binary.

• Checked by k -induction.
• Parameter eqs must relate enough of binary

state to C state to relate events after the loop.

Translation Validation for a Verified OS Kernel Copyright NICTA 2014
Thomas Sewell1, Magnus Myreen2, Gerwin Klein1 14/18

Generated proof scripts

Translating graphs into SMT exps

�������������

	����
����

����������
��	

���������������

��
��

�����

���������
	���	

���������
	���	

����	
���

������	
���
�����
	���	

����	
���

������	
���
���������	
���
�����
	���
���	
���
������������	
���
����
�������	

����	
���

Figure 5. Example Conversion to SMT

looping case, the new hypothesis is ¬b pcn. In each case it is ex-
pected that the subproof will begin with two Restrict rules which
use these hypotheses to restrict the number of visits into some finite
set. In the looping case, the set of possible visit counts will be of
the form {x | i  x < i + k} rather than {x | x < k}. This is an
alternative form of the Restrict rule.

Some slight generalisations to this induction are needed. Firstly,
the Split rule may define a sequence offset on either side. A C se-
quence offset of 2 means that we ignore the first two visits to b sp,
so b pci is the condition that b sp is visited at least i+2 times, and
|P |i is computed on the variable state at the second visit after the i-
th visit. This may be needed to handle various optimisations which
affect the initial few iterations of a loop, including a case where the
binary sequence is shorter than the C sequence because some iter-
ations have been unpacked entirely. Secondly, the predicate P may
be a function not only of the variable states at the respective i-th
visits, but also of the value i and the variable states at the first visit.
If a C variable is incremented by 1 each iteration, it is simplest to
record that it is i� 1 more than its first valuation.

The search process discovers the Split rules essentially by an
exhaustive search with some minor optimisations. In practice this
seems to be sufficient, although loop problems are by far the slow-
est problems for us to solve. In 33 of our 43 loops, the induction
proof succeeds for the first candidate P for which I0, I1, . . . In�1

hold, whereas in the remaining 10 cases the early check was mostly
irrelevant and an average of 15 attempts were required to find a suc-
cessful condition. The variation in these numbers is large, with the
worst offending loop contributing 84 attempts, nearly half the total.

3.3.6 Assertions
Assertions are checks introduced by the C parser to ensure the stan-
dard is respected. These checks have all been handled as proof obli-
gations in the seL4 verification, and may now be used as assump-
tions in this proof.

One assertion of the C standard is that no NULL pointer ever
be dereferenced. The C parser produces a guard at every statement
that uses a pointer which checks that the pointer is non-NULL and
appropriately aligned. These guards are converted into inequalities
and bit checks for the SMT solver, as are similar guards for arith-
metic overflow, division by zero, etc.

Note that, for clarity, we omit these guards in our examples.
There should, for instance, be a guard before the x+ 1 calculation
in Figure 5 to check that x+ 1 does not overflow to negative.

The most involved guards relate to the strict-aliasing rule in C.
The compiler is entitled to assume that no address is simultaneously
in use with two different types. We adjusted the C parser to generate
strong pointer validity assumptions pvalid htd ⌧ p for every pointer
p that is used with type ⌧ when the global heap type description
is htd. These assertions cannot be translated accurately into any

gcc -O1 gcc -O2
Instructions in Binary 11 736 12 299
Decompiled Functions 260 259
- Placeholders 3
Function Pairings 260 225
Successes 234 145
Failures 0 18
Aborted 26 62
- Machine Operations 21 13
- Nested Loops 3 2
- Machine Operations Inlined 2 47
Time Taken in Proof 59m 4h 23m

Table 1. Decompilation and Proof Results

SMT theory. Instead, each time we encounter and expression of
this form, we introduce new booleans pvalid1, pvalid2, etc to
represent them. We then translate the following key theorem:

pvalid htd ⌧ p pvalid htd

0
⌧

0
p distinct types ⌧ ⌧

0

{x | p  x < p+ size(⌧)} \ {x | p0  x < p

0 + size(⌧ 0)} = {}

The SMT form of this fact is pvalid1^pvalid2 �! p+ size(⌧)�
1 < p

0 _ p

0 + size(⌧ 0) � 1 < p. We produce all such theorems,
a possibly quadratic expansion, though the largest group of pvalid
assertions on the same heap type description which we have seen
in successful runs is 20.

These assertions appear in path conditions in the C function
graph. The proof checker always assumes the negation of the path
condition to Err in all its SMT checks, thus this information is
always available.

4. Evaluation and Discussion
4.1 Results
We report on two runs of the decompilation and proof, both for gcc
builds of seL4 at optimisation level 1 and 2 respectively. Table 1
shows the results. Proof timings are taken on a single core of
an Intel Core 2 Duo E8400. The majority of the time taken is
spent in the SMT solvers. A full decompilation run with proof
certificates takes an additional 6–8 hours on modern hardware. Our
implementation is based on the original decompiler implementation
by Myreen et al. [17], which was not optimised for speed. Recent
advances [18] may significantly improve this speed.

There are 540 functions in seL4, but far less symbols in the
binary after inlining. Our proof-producing decompiler is able to
process the whole binary for gcc -O1 and, at the time of writing, all

Here: ‘pc’ is the accumulated path condition and
 variables (x, y etc.) are values w.r.t. inputs (xi, yi, etc.)

(The actual translation avoids a blow up in size...)

Easy for SMT (1)
C Compiler Games

int

f1 (unsigned int x) {

return ((x >> 4) & 15) == 3;

}

int

f2 (unsigned int x) {

return (x & (15 << 4)) == (3 << 4);

}

int

f3 (unsigned int x) {

return ((x << 24) >> 28) == 3;

}

int

f4 (unsigned int x) {

return ((x & (15 << 4)) | (3 << 4)) == 0;

}

Word games: solved
problem.

• “Bit Vector” SMT
theory.

5 | Mini Phd-Review: Translation Validation, a Recap | Thomas Sewell

Easy for SMT (2)
Memory Games

void

f (struct foo *x, int y) {

struct foo f = *x;

f.a += y;

f.b -= y;

f = do_the_thing (f);

*x = f;

}

Memory optimisation: mostly solved problem.

• “Array” SMT theory.

• QF ABV SMT logic.

6 | Mini Phd-Review: Translation Validation, a Recap | Thomas Sewell

Memory Games

void

f (struct foo *x, int y) {

struct foo f = *x;

f.a += y;

f.b -= y;

f = do_the_thing (f);

*x = f;

}

Memory optimisation: mostly solved problem.

• “Array” SMT theory.

• QF ABV SMT logic.

6 | Mini Phd-Review: Translation Validation, a Recap | Thomas Sewell

SMT

SMT problems generated contain:

• Fixed-length values and arithmetic: etc.
• Arrays to model the heap: .
• If-then-else operators to handle multiple paths.

x := 12

x < 12?

x := y + 1

T F

• Validity assertions and needed inequalities:
&) ptr1 > ptr2 + 7 _ ptr2 > ptr1 + 15.

Strong compatibility with SMTLIB2 QF_ABV.

Translation Validation for a Verified OS Kernel Copyright NICTA 2014
Thomas Sewell1, Magnus Myreen2, Gerwin Klein1 15/18

SMT use summary

Examples

Example 1

Example

An example program:

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 6/11

Example 1 (cont)

Example

An example program:

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 6/11

Conversion to Graph

i := x

i < 100 ?
m := m[p + (i * 4) := rv]

rv := CALL g (i)
function g

return
i := i + 1

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 7/11

The C code as a graph:

Example 1 (cont)Example Decompilation

v := False, z := (r4 = 0),
n := msb r4, ...

z ?0x48:

0x44:

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 8/11

The machine code as a graph:

Example 1 (cont)

Graph Comparison

ass_2

15

N

ass_6

F

ass_66

T

ass_3

ass_10

N

13

C

ass_28

N

29

C

ass_7

T

t_Err_13

F

T

t_Err_29

F

ass_53

ass_65

C

54

N

ass_61

T

t_Ret_54

F

ass_76

C

ass_55

ass_72

C

N

C

75

N

ass_62

C

ass_63

N

ass_74

T

t_Err_75

F

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 9/11

We are to prove that these compute the same:

Example 1 (cont)

We are to prove that these compute the same:

Simplified Graph Comparison

start

loop test loop body

end

return

function g

0xC-0x14

0x18-0x40

0x100-0x104

0x44-0x48

0x4c-0x64

0x68-0x9c

return

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 10/11

(simplified view of graphs)

Compilation Structure

What is going on?

The loop has been unrolled.

The branches all encode .

Proof of correctness:

• relate the sequences of loop
body visits.

start

loop test loop body

end

return

function g

0xC-0x14: x > 99 ?

0x18-0x40: x = 99 ?

0x100-0x104: ret

0x44-0x48: x && 1?

0x4c-0x64: x = 98?

0x68-0x9c: loop

return

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 11/11

Example 1 (cont)

Proof Structure

Proof of correctness:
1 Case split on execution of :

• Consider even case

2 Relate visits to to visits 3, 5,
7, . . . to body by induction.

3 Case split on related sequences:
• Infinite case.
• Init case: < 4 visits to body.

Expand.
• Loop case: 2n visits to body for

some n > 1. Expand.

The proof search script discovers this
proof automatically.

start

loop test loop body

end

return

function g

0xC-0x14: x > 99 ?

0x18-0x40: x = 99 ?

0x100-0x104: ret

0x44-0x48: x && 1?

0x4c-0x64: x = 98?

0x68-0x9c: loop

return

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 12/11

Example 1 (cont)

Proof Search

Proof search:
• Unroll the first few loop

iterations.
• Produce SMT model.
• Look for coincidences.
• Check for counterexamples.

Formal Replay of Translation Validation for Highly Optimised C Work in Progress Copyright NICTA 2014
Thomas Sewell 13/11

Example 1 (cont)

Example 2: string compare
String Compare

int

strncmp(const char* s1, const char* s2, int n)

{

word_t i;

int diff;

for (i = 0; i < n; i++) {

diff = ((unsigned char*)s1)[i]

- ((unsigned char*)s2)[i];

if (diff != 0 || s1[i] == ’\0’) {

return diff;

}

}

return 0;

}

7 | Mini Phd-Review: Translation Validation, a Recap | Thomas Sewell

String Compare II

e001c598 <strncmp>:

e001c598: e3520000 cmp r2, #0

e001c59c: e92d0030 push {r4, r5}

e001c5a0: 01a00002 moveq r0, r2

e001c5a4: 0a00001a beq e001c614 <strncmp+0x7c>

e001c5a8: e5d03000 ldrb r3, [r0]

e001c5ac: e5d15000 ldrb r5, [r1]

e001c5b0: e0535005 subs r5, r3, r5

e001c5b4: 11a00005 movne r0, r5

e001c5b8: 1a000015 bne e001c614 <strncmp+0x7c>

e001c5bc: e3530000 cmp r3, #0

e001c5c0: 01a00003 moveq r0, r3

e001c5c4: 0a000012 beq e001c614 <strncmp+0x7c>

e001c5c8: e3120001 tst r2, #1

e001c5cc: e1a03000 mov r3, r0

e001c5d0: 0a000011 beq e001c61c <strncmp+0x84>

e001c5d4: e2850001 add r0, r5, #1

e001c5d8: e2855002 add r5, r5, #2

e001c5dc: e1520000 cmp r2, r0

e001c5e0: 9a000013 bls e001c634 <strncmp+0x9c>

e001c5e4: e5f3c001 ldrb ip, [r3, #1]!

e001c5e8: e5f14001 ldrb r4, [r1, #1]!

e001c5ec: e05c0004 subs r0, ip, r4

e001c5f0: 1a000007 bne e001c614 <strncmp+0x7c>

e001c5f4: e35c0000 cmp ip, #0

e001c5f8: 0a000005 beq e001c614 <strncmp+0x7c>

e001c5fc: e5f3c001 ldrb ip, [r3, #1]!

e001c600: e5f14001 ldrb r4, [r1, #1]!

e001c604: e05c0004 subs r0, ip, r4

e001c608: 1a000001 bne e001c614 <strncmp+0x7c>

e001c60c: e35c0000 cmp ip, #0

e001c610: 1affffef bne e001c5d4 <strncmp+0x3c>

e001c614: e8bd0030 pop {r4, r5}

e001c618: e12fff1e bx lr

e001c61c: e5f15001 ldrb r5, [r1, #1]!

e001c620: e5f3c001 ldrb ip, [r3, #1]!

e001c624: e05c0005 subs r0, ip, r5

e001c628: e3a05001 mov r5, #1

e001c62c: 0afffff6 beq e001c60c <strncmp+0x74>

e001c630: eafffff7 b e001c614 <strncmp+0x7c>

e001c634: e3a00000 mov r0, #0

e001c638: eafffff5 b e001c614 <strncmp+0x7c>

8 | Mini Phd-Review: Translation Validation, a Recap | Thomas Sewell

String Compare III

ass_1_C_Kernel_C.strncmp_0x21

4_C_Kernel_C.strncmp_0x5

N

5_C_Kernel_C.strncmp_0x6

T

Err

F

ass_3_C_Kernel_C.strncmp_0x1

Ret

N

F

12_C_Kernel_C.strncmp_0xd

T

9_C_Kernel_C.strncmp_0xa

N

F

T

25_ASM_strncmp_0xe001c608

34_ASM_strncmp_0xe001c614

T

ass_28_ASM_strncmp_0xe001c60c

F

Ret

T

Err

F

31_ASM_strncmp_0xe001c610

C

F

ass_79_ASM_strncmp_0xe001c5d4

T

86_ASM_strncmp_0xe001c5e0

C

43_ASM_strncmp_0xe001c5a0

46_ASM_strncmp_0xe001c5a4

N

T

58_ASM_strncmp_0xe001c5b4

F

61_ASM_strncmp_0xe001c5b8

N

T

67_ASM_strncmp_0xe001c5c0

F

70_ASM_strncmp_0xe001c5c4

N

T

77_ASM_strncmp_0xe001c5d0

F

F

85_ASM_strncmp_0xe001c62c

T

F

T

ass_78_ASM_strncmp_0x51

N

T

90_ASM_strncmp_0xe001c5f0

F

T94_ASM_strncmp_0xe001c5f8

F

F

T

9 | Mini Phd-Review: Translation Validation, a Recap | Thomas Sewell

Example 2: string compare (cont)

Example 2: string compare
String Compare

int

strncmp(const char* s1, const char* s2, int n)

{

word_t i;

int diff;

for (i = 0; i < n; i++) {

diff = ((unsigned char*)s1)[i]

- ((unsigned char*)s2)[i];

if (diff != 0 || s1[i] == ’\0’) {

return diff;

}

}

return 0;

}

7 | Mini Phd-Review: Translation Validation, a Recap | Thomas Sewell

Complications:

1. structure is different
(complex induction required,
case split on parity)

2. usual strategy of looking for
coincidences doesn’t work
(because values of i, s1 and s2
might not be there)

3. compiler optimises linear
variables and might track a
combination of them (e.g.
s1+i+4)

4. ignoring linear variables
doesn’t work because
memory stays the same

i < n might not be used for the first
few iterations in generated code

can waste hours of CPU time…

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

ex
is

tin
g

L4
.v

er
ifi

ed
 w

or
k

Big picture (again)

seL4 machine code

ne
w

 e
xt

en
si

on

gcc (not trusted)

machine code as graph

decompilation

refinement proof

Translation Validation for an Optimised Verified OS

Thomas Sewell
NICTA & UNSW, Sydney, Australia

thomas.sewell@nicta.com.au

Magnus Myreen
Cambridge University, UK

magnus.myreen@cl.cam.ac.uk

Gerwin Klein
NICTA & UNSW, Sydney, Australia

gerwin.klein@nicta.com.au

Abstract
In previous work, we showed that translation validation can be
used to complete the verification of a C program down to the final
machine code. We applied this to produce a verified core binary for
the seL4 microkernel for the first time.

This article summarises the work that went into “version 2” of
our tool, which allows us to produce a verified binary that reflects
the production binary for the first time. We now support many more
loop optimisations, allowing a variety of optimisation settings to be
used. We also handle low-level assembler routines more gracefully,
including allowing them to be inlined into verified functions, which
in turn allows us to verify all of the kernel binary apart from its
entry and exit paths.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability—Verification; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms Verification, Languages

Keywords Binary Verification, seL4, Microkernel

1. Introduction
Computer programs are typically written in one language and
translated into binary code to run natively on a target machine.
Translation validation is the act of checking that this translation
is correct. We introduce a translation validation approach capa-
ble of producing verified, optimised binaries from a number of C
programs, including in particular the seL4 operating system (OS)
microkernel[KEH+09].

This paper introduces our approach to translation validation
and the resulting tool, which we have recently named the Sydney
Translation Validation suite, SydTV for short.

The main function of SydTV is to produce a proof of refinement.
This refinement is divided into three component proofs, which
we sketch in Figure 1. These proofs are performed by different
components of SydTV in three different logical environments. The
three proof steps are connected by two intermediate representations
of the program. These shared representations are expressed in a
common interchange language, SydTV-GL, which we designed to
have a simple known semantics that can be expressed in all three
logical environments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c� ACM [to be supplied]. . . $15.00

Isabelle/HOL

Proof Producing Conversion

C
ProgramImport

Tuch/Norrish
C Semantics

C Program
Semantics

C SydTV-GL
Representation

ELF
Binary

HOL4
Binary SydTV-GL
Representation

Co
m

pa
ris

on

SydTV-GL-refine

Proof Producing
Conversion

Import

Cambridge
ARM Semantics

Binary
Semantics

Figure 1. Tools and artefacts of SydTV

Both the C language and the ARM processors we are inter-
ested in have a number of complex features which are not strictly
necessary. By contrast, SydTV-GL is designed to be as simple as
possible. The main function of the frontend is to reduce the com-
plexities of the C language to a simpler SydTV-GL representa-
tion, and prove this reduction was sound. This component is im-
plemented within the Isabelle/HOL theorem prover[NPW02], to
connect to the existing Tuch/Norrish C semantics[TKN07] and
the C-to-Isabelle parser used in a number of program verification
projects[KEH+09, NRM14, AHC+16]. The main function of the
backend is to eliminate complexities of the ARM architecture and
function calling convention, recovering a structured program. We
implement this backend using a variant of Myreen’s method of
decompilation into logic[MGS08, MGS12]. This is implemented
within the HOL4 theorem prover, and connects to the Cambridge
validated ARM semantics[FM10].

The core component of our approach, SydTV-GL-refine, is a
custom standalone tool which is backed by a suite of SMT solvers.
The key function of SydTV-GL-refine is to discover a proof of
refinement between two programs which are semantically related
but may be structurally quite different. The discovered proofs are
also checked within SydTV-GL-refine.

While all of the components of SydTV perform translation val-
idation, the nature of the problem varies substantially. The outer
components address the ideal version of the translation validation
problem, where the translation has been deliberately structured to
be easy to validate. The inner SydTV-GL-refine component, how-
ever, must handle the challenging variant of translation validation

Summary

Translation validation
can be used to formally check
the output of GCC -O1 and
(very nearly) -O2.

Validates the C semantics as
used for the seL4 proofs.

Questions?

