Hasploc

PROSPER and Friends:
An Overview

Mads Dam
KTH Royal Institute of Technology

Project team: Musard Balliu, Christoph Baumann, Victor Do,
Christian Gehrmann, Roberto Guanciale, Jonas Haglund,
Narges Khakpour, Andreas Lindner, Andreas Lundblad,

Hamed Nemati, Oliver Schwarz, Arash Vahidi

The PROSPER Project

Joint project KTH-SICS funded by Swedish Foundation for
Strategic Research

Start Jan 2012, ended Oct 2017

Project objectives:

— Build functional hypervisor for ARM-based systems
e ...focus on security

— Fully verified at system level
* Hypervisor code
e ... plusinteraction with hardware platform

— Support for GP 0OSs — RTOS, Linux, Android

* ... plus some security services

PROSPER - Results

* Verified hypervisors:
— Hypervisor vO — simple separation kernel for ARMv7
— Hypervisor vl — memory virtualisation for ARMv7
— Hypervisor v2, HASPOC — hypervisor for ARMvS8

— Increasing complexity and realism

* Main demonstrators:
— Secure software update (ARMv7)
— Secure network interface (ARMv7)
— Red/black separation for Android (ARMvS8, with Tutus AB)

... More

* Models and frameworks:
— Add-ons to Fox’s Cambridge HOL4/L3 models
— Compositional model framework

— Component models: MMUs, GICs, SMMUs, network
devices ...

— Asynchronous device framework

* Tools:
— ISA analyzers
— TreeDroid
— Info flow analysis tools EnCover (JVM) + others (binaries)
— HOL4 -> BAP lifter

... More

 Vulnerabilities and countermeasures:
— Mismatched cache attributes

— Countermeasures integrity, confidentiality

* Systems:
— Soft boot
— Secure boot for ARMvS
— Monotonic separation kernel

* URLs:
— prosper.sics.se
— haspoc.sics.se

This Presentation

* Go through the three hypervisor generations one by one
* Explain:

— Design rationale

— Modelling and verification approach

— Results
e Also discuss some of the related results:

— ISA analyzer

— Vulnerabilities, countermeasures, refinements

Separation Kernels

* Execution environments indistinguishable from a physically
distributed system [Rushby’81]

IR

... Or Hypervisors ...

* Execution environments indistinguishable from a physically
distributed system [Rushby’81]

IR

Provable Isolation — What Is Involved?

Large endeavour
Formal system model
— Processor, devices, interrupt controllers, MMUs
— Hypervisor, drivers, application code
— Justification: Precision, adequacy
Formalized security requirements
— Security specification
— Justification: Attack model
Verification
— Automated

IR

— Semi-automated
— Interactive

Virtualization Target

MIPI DSI MIPICSI_I| MIPICSI 2

A

4 e 5 »
Hi6220 -
? | aoemer
External Modem analog | managemer
32-bit width memory ~lane 4-lanc [2-lane [§ RX Main CLK | |
. ~ . ~Q ~NO bl X 2 . { '
[L.LPDDR3 interface § s § ADC x 3 AC x 2 *———————+j T
i3 "’w.:MH/g

Interface

Advance Video CODEC Mult ll)ﬂl’] o] L i I
1 . display ISP T N Cortex- . De b ¢
eMMC4.5 eMMC cacley Gib mode |37 coctorator | - !
: Mali4 50MP4 BBP : - .;' g]
5 P |
SD 3.0 Audio subswtem

CRG = 1
[CRG | e ISI0]

SDIO Vi PMCtrl DSP Digite al LK Audio
4-[—> 3.0 CODEC . CODEC
L&

UART ACPU '
, subsystem : ATAIN | F Audi
UART : ‘ Periph subsystem DAL ‘\“‘]’.;f’._
‘«C Cortex- Cortex- 5:\'[’:‘\()[1’?‘ 8 amplifier
A53 x 4 AS3 x4 (

{512KkB L2 M 512KB L2 DMAG di)
‘ CCI-400 Internal RAM Watchdog
A

12C bus

A

Touch panel
controller

PROSPER vO

Virtualization Target, vO, v1

PROSPER Kernel, vO

PROSPER Kernel, vO

e Context switch: Fixed round-robin scheduling

* Static memory allocation

* Asynchronous message passing through hypercall
e Paravirtualization

Dam, Guanciale, Khakpour, Nemati, Schwarz: Formal Verification of Information Flow Security for
a Simple ARM-Based Separation Kernel, CCS’13

Verification Strategy

Approach 1: Noninterference

IR

Confidentiality/nonexfiltration:
* No info flow from Guest, to Guest,,...,Guest, or to Hypervisor
Integrity (kind of) similar

Verification Strategy

Approach 1: Vanilla noninterference

IR

But:
* This was not the picture we wanted!
* What about communication?

Alternative Approach

Formulate ideal model
Satisfies isolation properties by construction

Hypervisor functionality replaced
by ideal functionality

Ideal CPUs — run only user space
code

All privileged execution is idealized
Two ideal message boxes

Ideal timer for “activity toggling”

Verification Goal

IR

* Equivalence: Each guest “sees” the same observations

* When guest G is active, the user mode observable parts of the
ARMvV7 machine state are identical

 =>Vanilla Nl in the absence of communication

Unwinding Relation

|ldentical:

* MMU readable memory

* User mode observable registers
* Message boxes

* Time

_

ARMv7 Regs ARMv7 Regs ARMv7 Regs

Unwinding Relation

Weak bisimulation

* Per partition

 User mode observations to be preserved
 Weak (non-preemptive) handler transitions

* The relation? See the previous slide!

Unwinding Relation

Boot Lemma

* Boot code terminates and establishes the relation
e Establish hypervisor invariant

 Machine code verification (HOL4 -> BAP)

Unwinding Relation

User Lemma
* No infiltration/no exfiltration for user mode transitions, NI

* Independent of handler code, independent of guest code
 Theorem proving (HOL4)

Unwinding Relation

Switch Lemma

* No infiltration/no exfiltration for exceptions/interrupts

* Independent of handler code, independent of guest code
 Theorem proving (HOL4)

Unwinding Relation

Handler Lemmas

* Handlers satisfy their contracts

 Dependent on handler code, independent of guest code
 Machine code verification (HOL4 -> BAP)

Verification Approach

ARMv7 properties Handler code
User Lemma Handler Lemmas
Switch Lemma Boot Lemma
Property of ARMv7 Code property

instruction set architecture | Frequently updated

HOL4 + Cambridge C + assembly + gcc
ARMv7 model + L3 + MMU BAP + STP

Noninterference lemmas | Contract verification

Automation: See later “Semi”-automatic

PROSPER v1

PROSPER Kernel, v1

MMU Virtualization

« MMU: Key component to virtualize
commodity OSs

| e
* L1 and L2 page tables e
Lifijo]

: ' I
* Page tables map virtual addresses ‘EEE

to intermediate addresses to » E
B
physical addresses ‘

e Control is vital
— For virtualization

— For sandboxing, etc.

Guanciale, Nemati, Dam, Baumann: Provably secure memory isolation for Linux on
ARM, Journal of Computer Security 24(6), 2016

The Prosper vl Hypervisor

* Primary use case:
— Single untrusted OS guest
— “Collaboratively” scheduled secure services
e Paravirtualization
* Memory management:
— Direct paging, as in Xen-x86 or Secure Virtual Architecture?
— Page tables reside in guest memory
— Guest can manipulate page tables when not in use
— Hypervisor mediates access to page tables when active
— Guest fully in charge of memory management

1. Criswell et al: Secure Virtual Architecture: A safe execution environment ... SOSP’07

The Prosper vl Hypervisor

DMMU —the MMU virtualization API:
* Memory partitioned in physical blocks of 4 KB
* Blocks are typed: t(block) in {L1,L2,D}

* 9 primitive API calls to activate, create or free page tables and
to map or unmap memory blocks

 Areference counter keeps track of active references
* Hypervisor prevents unsound requests:
— No access outside the guest memory
— No writable access to a page table
* Block type can be changed if the reference counter is zero

Verification

Two stages:

1. ldeal model
— Hypervisor state is idealized
— Page tables stored in memory
— Reference counter = 0 => page table can be freed
— Hypervisor addresses physical memory
— Correctness proof is needed

2. Implementation model
— Algorithm + hypervisor state -> hypervisor memory
— Hypervisor addresses virtual memory

3. Refinement proof
— Transfers info flow properties to implementation model
— Bisimulation proof with some twists

ldeal Model Correctness Proof

Main components of proof:

* Invariant property maintained by the 9 API calls
Needed for the below

* Complete mediation:
Guest transitions cannot directly affect MMU behaviour

* Integrity:
Guest transitions cannot affect hypervisor or secure guests
state

* Confidentiality:
No flow of information from hypervisor or secure guest state to
insecure guest - noninterference

Implementation

Privileged Code

Privileged components:
* Interface layer SW Intermipt

* Linux adaptation layer
e DMMU handlers B

Features:

 Small critical core

* No direct access to
critical functionality
from Linux layer

 Simpler to verify

PROSPER Kernel v1 - Applications

MProsper: Executable Space Protection

* Memory blocks are executable or writeable, but not both
 Reference monitor intercepts memory attribute changes
* Pages are made executable only if they are duly signed

 Examples: OpenBSD 3.3, Linux PaX, Exec Shield, NetBSD, MS
Oss with Data Execution Prevention

* Here: Using the Prosper kernel to implement this in a
provably secure manner

 Monitor runs as isolated with read permissions - tamperproof
* Proof extends hypervisor security proof

Chfouka, Nemati, Guanciale, Dam, Ekdahl: Trustworthy Prevention of Code Injection in
Linux on Embedded Devices, ESORICS’15

MProsper Design

Privileged Code

Enforce WKDX policy Sty i
On Linux request to
change access rights:

Hypercall

* Downgrade request

e Store suspended
(O ESALRE]]E

On data/prefetch abort:

* Downgrade and store
current setting

 Re-enable suspended
request, if safe

PROSPER Kernel, v1, Extensions

Devices

Issues:
* Memory-mapped IO registers

* Interrupts
 DMA
* Asynchronous operation

Virtualization:

* Virtualized register accesses
e Static memory partitioning
Modeling:

* |Interleaving of processor/device
memory accesses using oracle

Schwarz, Dam: Formal Verification of Secure User Mode Device Execution with DMA, HVC'14

Status

Implementation:
— Ports for Linux 2.6.34 and Linux 3.10, BeagleBone, RPi 2
— Performance comparable to Xen
— Low memory overhead compared to shadow paging
— Experimental multicore port, one hypervisor per core

Models:
— ARMvV7 model in L3 extended with MMU and system functionality

— Proven ISA level non-interference properties
— NIC + DMA models

Tools:
— HOL4 for model and design verification (refined-ideal bisimulation)
— Lifter from ARMv7 to BAP, partially verified in HOL4

— Binary code verification using SMT solver (STP)

Proofs:
— Guest switch lemma, verified hypervisor design
— Full verification vO, part binary verification v1,
— Proof for NIC virtualization in progress

PROSPER v2

Virtualization Target v2, HASPOC

Tutus demonstrator

Android

Hypervisor

Hardware

ke

MOBILE

SITUTUS
Red-black architecture @ o

- Untrusted: Android and Linux Kernel
- Middle guest is trusted:

- negotiates parameters for VPN

- encrypts all outgoing traffic

- decrypts all incoming traffic

System objectives:
- VPN is enforced under all conditions
- VPN parameters never compromised

TN

L\»\/J/

Tutus demonstrator

TUTUS

Red-black architecture

i Minimal COTS hypervisor for ARMvS:
Fixed #guests, static memory allocation
Cores and devices owned exclusively
No device virtualisation except GIC
Secure boot loader

Memory isolation through HW extensions and
SMMUs

Main runtime hypervisor task is GIC virtualisation

Communication only through predefined
channels

IST MOBILE

Tutus demonstrator

@ TUTUS

Red-black architecture

Android
- Untrusted: Android and Linux Kernel

Traffic - Middle guest is trusted:
— - negotiates parameters for VPN

write read

guest 1 3 shared
core i memory

_ ns
virtual ed

interrupt

hypercall
Y

HV software-generated
core i interrupt

/ 2

MOBILE

Security Goal

Real System Ideal Model

Android Android

IR

* |deal model: Secure by construction
e Bisimulation relation transfers info flow properties
e Verification: Focus on on guest (user mode) execution

Status

Implementation:
— HiKey board, <64KB code base <10K LoC, <2MB DRAM
— Demonstrators stable, <15% OH (interrupt penalties)
— Inter guest communication up to 750 Mbps
— Secure boot faster than ARM Trusted Firmware

Models:
— ARMvV8 model in L3 extended with MMU and system features
— Compositional model for proof reusability and refinement
— Sequential memory, cache model under development

Tools:
— Lifter from ARMvS8 to BAP, verified in HOL4
— Formal BAP Intermediate Language semantics in HOL4

Proofs:
— System level HOL4 proof of guest non-interference complete
— Pen-and-paper proof of design, Common Criteria compatible
— Verified weakest precondition generation (ongoing)
— Experiments in binary ARMv8 code verification

ISA Information Flow

ISA Info Flow Analysis

s .
I | v .

Recall:

This is a property of the instruction set architecture!

Is it important?
— Yes, check Meltdown/Spectre
Could we have caught Meltdown/Spectre?
— Currently have caches in model, not speculation
— Given adequate model and enough cpu cycles, maybe

Schwarz, Dam: Automatic derivation of platform noninterference properties. SEFM 2016, 27-44

ISA Info Flow Analysis: The Problem

Wish to determine:
— What can a given user process determine of the processor

state?
ci

ctrl | pub

Dual problem:

— Which parts of the processor state can a user process
(process at privilege level x) influence?

— Can be solved in similar manner

ISA Info Flow Analysis: The Problem

Input:
— Initial level assignment /
Output:

— Provably minimal final level assignment F containing /

Objectives:
— Soundness, precision
— Apply to HOL4 ISA spec as is
— Implement in HOL4
— Fully automatic
— Test on realistic specs

ISA Info Flow Analysis: Complications

getControl s = Tricky to map into a
let m = s.mode standard type-based
in setting:
. * Mappings need
le_t €= sometimes to be
(if m = user evaluated, sometimes
bitmask (s.ctrl m) not
else Levels need sometimes
s.ctrl m to be assigned bitwise,
sometimes not
) Heavy context
in (c,s) dependency
end

end

ISA Info Flow Analysis: Approach

Rewriting
— Cambridge ISA specs are large so care is needed
— Use Fox’s ARM step library whenever possible
Instruction task queue:
— Rewrite to suitable normal form
— Attempt to prove NI
— Success, move on
— Failure:
* Failure of proof search to imply counterexample
* Use counterexample to refine low-equivalence relation
* This gives minimality
* Re-enqueue validated instructions

ISA Info Flow Analysis: Results

ARMv7-A user mode, no MMU, no security or hypervisor
extensions

— Initial: PC
— Final included: User reg’s, full CPSR, some FP registers,
TEEHBR, SCTLR flags EE, TE, V, A, U, DZ

— Not included: Banked registers, SPSRs, some FIQ-related
registers, CP15.SCTLR.{NMFI,VE}

— Running time > 21 hrs on single Xeon X3470 core
MIPS-III

— Initial: PC + some basic registers, final: all, 1 hr+
MIPS-III restricted user mode

— Initial as above, final: GP registers + some status flags, 38’

Caches, caches, caches

Caches and Stuff

Current ISA modeling tends to ignore many nasty details
— Caches and cache management
— Speculation
— Lots of system features

How much of a problem is this?

Timing and power channels
— Very difficult to close completely
— Model-external features - abstract away (?)

Cache storage channels
— Deterministic channels not relying on timing/power
— Model internal - harder to ignore

Post Meltdown/Spectre: We're in trouble (!)

Example: Memory Incoherence

Coherent memory:
— Observers (cores, MMUSs, etc) all see the same sequence of
writes, per location

Controlled incoherence:
— If one agent can be set up to control what another agent sees,
we have a potential attack

Mismatched cacheability attributes
— Virtual aliases with conflicting cacheability
— Reasonable scenarios exist (e.g., virtualisation)
— If cache and memory can disagree without entry becoming dirty
there is a problem
— This is sometimes the case
— Integrity and confidentiality attacks

Guanciale, Nemati, Baumann, Dam: Cache storage channels: Alias-driven attacks and verified
countermeasures. S&P 2016, 38-55

Verification

More fine-grained model with caches
New proof machinery

Formalised countermeasures

Not least: Redoing work already done . ..

Approach:

Reuse verification on cacheless model
Use proof obligations:

* On processor model

* On hypervisor

* On countermeasures

* On application
General multilevel dcache+icache model
Integrity proof done for two countermeasures
Confidentiality in progress

Challenges

Precise Hardware Models

Modern hardware is complex
— Weakly-consistent memory
— Out-of-Order and speculation
— Cache hierarchies, MMUs, DMA bus masters, TLBs
— Rich flora of devices w. rapid churn
— How to keep up and scale?

Vendor-provided models
— Lack of documentation is a big issue
— See Alastair Reid’s presentation on ARM models
— Open source hardware, e.g. RISC-V?
— Hidden instructions? Vendor-specifics? HW Trojans?
— “Unpredictable behaviour”?

Generality and reusability
— vs. side channel protection/bisimulations

Managing Complexity

Building formal HW models is hard
— Huge informal specs
— Implementation-dependent behaviour
— Hard to test

Can we make it easier?
— Domain-specific languages can help
— Decomposed models for spec and proof reuse
* Absolutely necessary for modern architectures
— Frameworks needed to mechanise proof search
 HOL4 good starting point for this
— Executable models
e Generality vs executability & speed
— Automating model construction
* Check out Heule et al: Stratified synthesis: Automatically
learning the x86-64 instruction set, PLDI'16

Thank you!

ARMvV8 Platform Model

memory-mapped |/O

 Compositional model, async message passing

ARMvV8 Platform Model

memory-mapped |/O

 Compositional model, async message passing
 (S)MMU: Active?, page table base, current translations

ARMvV8 Platform Model

 Compositional model, async message passing

 (S)MMU: Active?, page table base, current translations
* Core: Execution mode, some hypervisor ext registers

ARMvV8 Platform Model

memory-mapped |/O

 Compositional model, async message passing
 (S)MMU: Active?, page table base, current translations
* Core: Execution mode, some hypervisor ext registers

* Device: Mostly uninterpreted, DMA enabled?

ARMvV8 Platform Model

l-ﬁ

memory-mapped |/O

 Compositional model, async message passing
 (S)MMU: Active?, page table base, current translations
* Core: Execution mode, some hypervisor ext registers

* Device: Mostly uninterpreted, DMA enabled?

* Memory: Flat map, memory-mapped |10

ARMvV8 Platform Model

interrupt I GIC I interrupt

:) = DMA
core | MMU i memory SMMU | device |

memory-mapped |/O

 Compositional model, async message passing
 (S)MMU: Active?, page table base, current translations
* Core: Execution mode, some hypervisor ext registers

* Device: Mostly uninterpreted, DMA enabled?

* Memory: Flat map, memory-mapped |10

* GIC: Hypervisor-accessed registers, interrupt state

ARMvV8 Platform Model

 Compositional model, async message passing

 (S)MMU: Active?, page table base, current translations
* Core: Execution mode, some hypervisor ext registers

* Device: Mostly uninterpreted, DMA enabled?

* Memory: Flat map, memory-mapped |10

* GIC: Hypervisor-accessed registers, interrupt state

* Hypervisor: Fine-grained LTS, GIC interaction

ldeal Model

IGC buffer

| GUEST 1

| GUEST 2

* |deal core: HV invisible / atomic hypercall semantics

ldeal Model

| GUEST 1

* |deal core: HV invisible / atomic hypercall semantics
e Buffer for outgoing IGC notification interrupts

ldeal Model

IGC buffer

| GUEST 1

| GUEST 2

* |deal core: HV invisible / atomic hypercall semantics
e Buffer for outgoing IGC notification interrupts
* |GC shared memory duplicated and copied on write

ldeal Model

| GUEST 1

| GUEST 2

|deal core: HV invisible / atomic hypercall semantics
Buffer for outgoing IGC notification interrupts
|IGC shared memory duplicated and copied on write
|Ideal GIC: interrupt separation by construction

ldeal Model

| GUEST 1

| GUEST 2

|deal core: HV invisible / atomic hypercall semantics
Buffer for outgoing IGC notification interrupts
|IGC shared memory duplicated and copied on write
|Ideal GIC: interrupt separation by construction
Message buffers as placeholders for (S)MMUs

ldeal Model

J |

| GUEST 1

| GUEST 2

|deal core: HV invisible / atomic hypercall semantics

Buffer for outgoing IGC notification interrupts

|IGC shared memory duplicated and copied on write

|Ideal GIC: interrupt separation by construction

Message buffers as placeholders for (S)MMUs

Memory: only guest portion, intermediate physical addresses

Bisimulation Relation

Bisimulation Relation

interrupt interrupt

=

IGC buffer memory-mapped I/O

out—~

. . =1 .| DMA . -
core | MMU i memory SMMU device |

' interrupt interrupt
DMA

. memory-mapped I/0 .

Bisimulation Relation

Bisimulation Relation

ME

terrupt

memory

Bisimulation Relation

g -

/ memory

'
7]

memory-mapped I/0

Bisimulation Relation

i

memory device |

R
YAY
‘u -

memory-mapped I/0

Bisimulation Relation

i

iy
WA,

A

memory-mapped I/0

Integrity Cache Incoherence Attack

V1: D = access(VA_c)
. memory memory
A1: write(VA_nc,1) n-
V2: D = access(VA_c)
V3: if not policy(D) m\
reject /m n“--

[evict VA_c]

V4: use(VA_c)

Integrity Cache Incoherence Attack

V1: D = access(VA_c) Virtual Physical Cache
. memory memory

A1: write(VA_nc,1)

V2: D = access(VA_c)
reject /mnm

[evict VA_C]

V4: use(VA_c)

Integrity Cache Incoherence Attack

Cache
s memory memory
V2: D = access(VA_c)

V3: if not policy(D) m\
reject /mnmn

[evict VA_c]

V4: use(VA_c)

Integrity Cache Incoherence Attack

V1: D = access(VA_c)
.. ki’ i
A1: write(VA_nc,1) nn
V2: D = access(VA_c)
V3: if not policy(D) m\
reject /m nﬂ_mn

[evict VA_c]

V4: use(VA_c)

Integrity Cache Incoherence Attack

V1: D = access(VA_c)
. memory memory
A1: write(VA_nc,1) nn
V2: D = access(VA_c)
V3: if not policy(D) m\
reject /m -'"--

V4: use(VA_c)

Integrity Cache Incoherence Attack

V1: D = access(VA_c)
. memory memory
A1: write(VA_nc,1) nn
V2: D = access(VA_c)
V3: if not policy(D) m\
reject /m n--m

[evict VA_c]

V4: use(VA_c)

Confidentiality Cache Incoherence Attack

memory memory

A2: write(VA_nc, 0)
A3: D =read(VA c)
A4: write(VA nc, 1)
A5: call victim

A6: D =read(VA c) S)m
.
visfsec e
access(VA_3)
else -"'--

access(VA_4)

Confidentiality Cache Incoherence Attack

memory memory

Al: invalidate(VA _c)

A3: D =read(VA c)
A4: write(VA nc, 1)
A5: call victim

A6: D =read(VA c) %n

Visif sece s s
access(VA_3)
else -'"--
secr |

access(VA_4)

Confidentiality Cache Incoherence Attack

memory memory

Al: invalidate(VA _c)
A2: write(VA_nc, 0)

A4: write(VA nc, 1)
A5: call victim
A6: D =read(VA c)

V1: if secr
access(VA_3)
else _ vAa ggrad| gm |

access(VA_4)

Confidentiality Cache Incoherence Attack
' Cache
A2: write(VA_nc, 0) memory memory
A3: D =read(VA c)

A5: call victim

A6: D =read(VA c) S)m
Bl

B o
Vi fsec -

access(VA_3)
else -'"--
secr |

access(VA_4)

Confidentiality Cache Incoherence Attack

memory memory

Al: invalidate(VA _c)
A2: write(VA_nc, 0)
A3: D =read(VA c)

A4: write(VA nc, 1)

A6: D =read(VA c) S)m
Bl

Visif sece s
access(VA_3)
_ vAa ggrad| gm |

else

access(VA_4)

Confidentiality Cache Incoherence Attack
Cache
A2: write(VA_nc, 0) memory memory
A3: D =read(VA c)
A4: write(VA nc, 1)
A5: call victim

A6: D =read(VA c) S)m
Bl

visfsec e
access(VA_3)
else

access(VA_4)

Confidentiality Cache Incoherence Attack
Cache
A2: write(VA_nc, 0) memory memory
A3: D =read(VA c)
A4: write(VA nc, 1)
A5: call victim

V1: if secr
access(VA_3)

else
access(VA_4)

Confidentiality Cache Incoherence Attack

memory memory

Al: invalidate(VA _c)
A2: write(VA_nc, 0)
A3: D =read(VA c)

A4: write(VA nc, 1)

A6: D =read(VA c) S)m
Bl

Visif sece s
access(VA_3)
| VA4 ggrad| mReAdl

else

access(VA_4)

Confidentiality Cache Incoherence Attack

A2: write(VA_nc, 0) memory memory
A3: D =read(VA_c)

A4: write(VA nc, 1)

A6: D =read(VA c)
%\

I
Viifser s | g

access(VA_3)
else -'"m-
secr | 1

access(VA_4)

Confidentiality Cache Incoherence Attack

Al:
A2:
A3:
A4:

A5:
A6:

V1:

invalidate(VA c)
write(VA_nc, 0)
D =read(VA _c)
write(VA_nc, 1)
call victim

D = read(VA _c)

if secr
access(VA_3)

else
access(VA_4)

memory memory

Y- - CY
o | 1

Confidentiality Cache Incoherence Attack
Cache
A2: write(VA_nc, 0) memory memory
A3: D =read(VA c)
A4: write(VA nc, 1)
A5: call victim

V1: if secr
access(VA_3)

else
access(VA_4)

Example Attacks

Three attacks implemented using mismatched cache attribute
vector:

1. AESin Trustzone on RPi2

128 bit key extracted after 850 encryptions
2. Prosper vl on Beagleboard MX

Attacker: Non-secure guest

Validation of non-valid page table

Attacker gets full control

3. Extraction of exponent from modular exponentation
procedure

Non-pc secure procedure in Trustzone on RPi2
Execution path detected through instruction cache attack

Countermeasures

For confidentiality:
— Standard timing approaches:
— PC-secure code, secret independent memory accesses, . ..
For integrity:
— Guarantee coherence of accessed memory
— Cache flushes, explicit eviction of cache lines, . ..

Specific for mismatched cache attributes:
— Secret independent cache line accesses
— Prevent uncacheable aliases for specific memory regions

