
The Semantics Stack of the Verisoft XT Project

Christoph Baumann

KTH Royal Institute of Technology
Stockholm, Sweden

January 25, ENTROPY 2018

cbaumann@kth.se

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 1 / 30

Introduction

Verisoft: Pervasive OS Verification (2003-2007)

HW correctness

VAMP Hardware

DLX ISA Model

C0+inline ASM

CVM framework

VAMOS / OLOS

SOS Apps

verification
ab

straction
p

ro
p

er
ty

tr
an

sf
er

Compiler correctness

Kernel correctness

User mode

OS primitive correctness

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 2 / 30

Introduction

Verisoft XT Project (2007-2010)

Pervasive Formal Verification of Realistic Computer Systems

Hardware Verfication ()

Automotive Software (,)

Avionics Project (, ,)

Hypervisor Project ()
tool development: VCC

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 3 / 30

Introduction

Verisoft XT Project (2007-2010)

Pervasive Formal Verification of Realistic Computer Systems

Hardware Verfication ()

Automotive Software (,)

Avionics Project (, ,)

Hypervisor Project ()
tool development: VCC

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 3 / 30

Introduction

Verisoft XT Project (2007-2010)

Pervasive Formal Verification of Realistic Computer Systems

Hardware Verfication ()

Automotive Software (,)

Avionics Project (, ,)

Hypervisor Project ()

tool development: VCC

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 3 / 30

Introduction

Verisoft XT Project (2007-2010)

Pervasive Formal Verification of Realistic Computer Systems

Hardware Verfication ()

Automotive Software (,)

Avionics Project (, ,)

Hypervisor Project ()
tool development: VCC

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 3 / 30

Introduction

Results:
large portions of code verified
kernel and hardware specifications
powerful verifier VCC

Main issue: missing semantical underlay
weak memory model
memory management units with TLBs
mixed C & assembly code
interruptible C
multi-threaded C
interleaved user and device steps
concurrent compiler correctness

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 4 / 30

Introduction

Results:
large portions of code verified
kernel and hardware specifications
powerful verifier VCC

Main issue: missing semantical underlay

weak memory model
memory management units with TLBs
mixed C & assembly code
interruptible C
multi-threaded C
interleaved user and device steps
concurrent compiler correctness

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 4 / 30

Introduction

Results:
large portions of code verified
kernel and hardware specifications
powerful verifier VCC

Main issue: missing semantical underlay
weak memory model
memory management units with TLBs
mixed C & assembly code
interruptible C
multi-threaded C
interleaved user and device steps
concurrent compiler correctness

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 4 / 30

Introduction

DISCLAIMER

Lots of people involved in the presented work:

Artem Alekhin
Geng Chen
Ernie Cohen
Ulan Degenbaev
Mikhail Kovalev
Petro Lutsyk
Jonas Oberhauser
Hristo Pentchev
Prof. Wolfgang J. Paul
Norbert Schirmer
Sabine Schmaltz
Andrey Shadrin

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 5 / 30

Introduction

“Theory of Multi Core Hypervisor Verification”
Cohen, Paul, and Schmaltz, 2013

Gate Level Hardware

Hardware Abstraction

Semantics Stack

Verification Approach

Kernel Specification

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 6 / 30

Hardware Abstraction

Instruction Set Architecture

system programmer’s model
memory management unit
cache control instructions
pipelining artifacts
weak memory model
undefined behaviour
software conditions

Machine readable models:

rudimentary PowerPC model
x64:
“Formal Specification of the x86 Instruction Set Architecture”
Ulan Degenbaev, PhD thesis, 2011

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 7 / 30

Hardware Abstraction

Instruction Set Architecture

system programmer’s model
memory management unit
cache control instructions
pipelining artifacts
weak memory model
undefined behaviour

software conditions

Machine readable models:

rudimentary PowerPC model
x64:
“Formal Specification of the x86 Instruction Set Architecture”
Ulan Degenbaev, PhD thesis, 2011

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 7 / 30

Hardware Abstraction

Instruction Set Architecture

system programmer’s model
memory management unit
cache control instructions
pipelining artifacts
weak memory model
undefined behaviour
software conditions

Machine readable models:

rudimentary PowerPC model
x64:
“Formal Specification of the x86 Instruction Set Architecture”
Ulan Degenbaev, PhD thesis, 2011

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 7 / 30

Hardware Abstraction

Instruction Set Architecture

system programmer’s model
memory management unit
cache control instructions
pipelining artifacts
weak memory model
undefined behaviour
software conditions

Machine readable models:

rudimentary PowerPC model
x64:
“Formal Specification of the x86 Instruction Set Architecture”
Ulan Degenbaev, PhD thesis, 2011

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 7 / 30

Hardware Abstraction

Hardware correctness: MIPS86

IF

ID

EX

M

WB

imout

nextpc

env
im

ea.oea.o

I

inc sh4s

B

dmin, bw

sh4l

dmout

10

lres

l

A,B

B

A

F, p

pc

pc xtimm xtimm

SUenvALUenv add

muxes

ea

ea.l

A

gpr

C

sres

p

A,B A

ares

ea.o, p, F

bf

xtimm, af, sf, sa

A,B, af sa, sf

linkad

p, F

rs, rt, Cad, gprw

p, Cad, F
I-decoder

ima

m

ima

imout

env

MIPS instruction core with x86
memory system:

MMUs / TLBs
interrupts
devices
caches
store buffers

correctness proof for pipelined
multicore implementation with
find software conditions of ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 8 / 30

Hardware Abstraction

Hardware correctness: MIPS86

IF

ID

EX

M

WB

imout

nextpc

env
im

ea.oea.o

I

inc sh4s

B

dmin, bw

sh4l

dmout

10

lres

l

A,B

B

A

F, p

pc

pc xtimm xtimm

SUenvALUenv add

muxes

ea

ea.l

A

gpr

C

sres

p

A,B A

ares

ea.o, p, F

bf

xtimm, af, sf, sa

A,B, af sa, sf

linkad

p, F

rs, rt, Cad, gprw

p, Cad, F
I-decoder

ima

m

ima

imout

env

MIPS instruction core with x86
memory system:

MMUs / TLBs
interrupts
devices
caches
store buffers

correctness proof for pipelined
multicore implementation with
find software conditions of ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 8 / 30

Hardware Abstraction

Hardware correctness: MIPS86

IF

ID

EX

M

WB

imout

nextpc

env
im

ea.oea.o

I

inc sh4s

B

dmin, bw

sh4l

dmout

10

lres

l

A,B

B

A

F, p

pc

pc xtimm xtimm

SUenvALUenv add

muxes

ea

ea.l

A

gpr

C

sres

p

A,B A

ares

ea.o, p, F

bf

xtimm, af, sf, sa

A,B, af sa, sf

linkad

p, F

rs, rt, Cad, gprw

p, Cad, F
I-decoder

ima

m

ima

imout

env

MIPS instruction core with x86
memory system:

MMUs / TLBs
interrupts
devices
caches
store buffers

correctness proof for pipelined
multicore implementation with

find software conditions of ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 8 / 30

Hardware Abstraction

Hardware correctness: MIPS86

IF

ID

EX

M

WB

imout

nextpc

env
im

ea.oea.o

I

inc sh4s

B

dmin, bw

sh4l

dmout

10

lres

l

A,B

B

A

F, p

pc

pc xtimm xtimm

SUenvALUenv add

muxes

ea

ea.l

A

gpr

C

sres

p

A,B A

ares

ea.o, p, F

bf

xtimm, af, sf, sa

A,B, af sa, sf

linkad

p, F

rs, rt, Cad, gprw

p, Cad, F
I-decoder

ima

m

ima

imout

env

MIPS instruction core with x86
memory system:

MMUs / TLBs
interrupts
devices
caches
store buffers

correctness proof for pipelined
multicore implementation with
find software conditions of ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 8 / 30

Hardware Abstraction

Recent text books / lecture notes:

“A Pipelined Multi-core MIPS Machine”.
M. Kovalev, S. M. Müller, and W. J. Paul,
Springer, 2014

“System Architecture: An Ordinary Engineering Discipline”.
W. J. Paul, C. Baumann, P. Lutsyk, and S. Schmaltz,
Springer, 2016

“Multicore System Architecture”.
W. J. Paul, P. Lutsyk, and J. Oberhauser,
Springer, to be published

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 9 / 30

Hardware Abstraction

Reducing caches, store buffers, and MMU

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 10 / 30

Hardware Abstraction

Cache abstraction

MOESI protocol
give parallel implementation
correctness proof and simulation

Theorem
If every address is accessed in the same cache mode by all

processors then caches are invisible.

Proof: “A Pipelined Multi-core MIPS Machine”
Kovalev, Müller, and Paul, 2014

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 11 / 30

Hardware Abstraction

Store buffer reduction

buffer writes locally before commiting them to memory
can ruin sequential consistency in multicore processors:

{x = 0 ∧ y = 0}
(x := 1;R1 = y) || (y := 1;R2 = x)

{¬(R1 = 0 ∧ R2 = 0)}

need to add fences which flush the store buffer:

(x := 1;FENCE ;R1 = y) || (y := 1;FENCE ;R2 = x)

efficient flushing policy:
1 Mark concurrent accesses to the same address as shared!
2 Between any shared write and shared read, flush the store buffer!

concurrent accesses: exists an interleaved execution schedule:
consecutive steps by different threads access the same address
at least one of them is modifying its value

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 12 / 30

Hardware Abstraction

Store buffer reduction
buffer writes locally before commiting them to memory

can ruin sequential consistency in multicore processors:

{x = 0 ∧ y = 0}
(x := 1;R1 = y) || (y := 1;R2 = x)

{¬(R1 = 0 ∧ R2 = 0)}

need to add fences which flush the store buffer:

(x := 1;FENCE ;R1 = y) || (y := 1;FENCE ;R2 = x)

efficient flushing policy:
1 Mark concurrent accesses to the same address as shared!
2 Between any shared write and shared read, flush the store buffer!

concurrent accesses: exists an interleaved execution schedule:
consecutive steps by different threads access the same address
at least one of them is modifying its value

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 12 / 30

Hardware Abstraction

Store buffer reduction
buffer writes locally before commiting them to memory
can ruin sequential consistency in multicore processors:

{x = 0 ∧ y = 0}
(x := 1;R1 = y) || (y := 1;R2 = x)

{¬(R1 = 0 ∧ R2 = 0)}

need to add fences which flush the store buffer:

(x := 1;FENCE ;R1 = y) || (y := 1;FENCE ;R2 = x)

efficient flushing policy:
1 Mark concurrent accesses to the same address as shared!
2 Between any shared write and shared read, flush the store buffer!

concurrent accesses: exists an interleaved execution schedule:
consecutive steps by different threads access the same address
at least one of them is modifying its value

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 12 / 30

Hardware Abstraction

Store buffer reduction
buffer writes locally before commiting them to memory
can ruin sequential consistency in multicore processors:

{x = 0 ∧ y = 0}
(x := 1;R1 = y) || (y := 1;R2 = x)

{¬(R1 = 0 ∧ R2 = 0)}

need to add fences which flush the store buffer:

(x := 1;FENCE ;R1 = y) || (y := 1;FENCE ;R2 = x)

efficient flushing policy:
1 Mark concurrent accesses to the same address as shared!
2 Between any shared write and shared read, flush the store buffer!

concurrent accesses: exists an interleaved execution schedule:
consecutive steps by different threads access the same address
at least one of them is modifying its value

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 12 / 30

Hardware Abstraction

Store buffer reduction
buffer writes locally before commiting them to memory
can ruin sequential consistency in multicore processors:

{x = 0 ∧ y = 0}
(x := 1;R1 = y) || (y := 1;R2 = x)

{¬(R1 = 0 ∧ R2 = 0)}

need to add fences which flush the store buffer:

(x := 1;FENCE ;R1 = y) || (y := 1;FENCE ;R2 = x)

efficient flushing policy:
1 Mark concurrent accesses to the same address as shared!

2 Between any shared write and shared read, flush the store buffer!
concurrent accesses: exists an interleaved execution schedule:

consecutive steps by different threads access the same address
at least one of them is modifying its value

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 12 / 30

Hardware Abstraction

Store buffer reduction
buffer writes locally before commiting them to memory
can ruin sequential consistency in multicore processors:

{x = 0 ∧ y = 0}
(x := 1;R1 = y) || (y := 1;R2 = x)

{¬(R1 = 0 ∧ R2 = 0)}

need to add fences which flush the store buffer:

(x := 1;FENCE ;R1 = y) || (y := 1;FENCE ;R2 = x)

efficient flushing policy:
1 Mark concurrent accesses to the same address as shared!
2 Between any shared write and shared read, flush the store buffer!

concurrent accesses: exists an interleaved execution schedule:
consecutive steps by different threads access the same address
at least one of them is modifying its value

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 12 / 30

Hardware Abstraction

Store buffer reduction
buffer writes locally before commiting them to memory
can ruin sequential consistency in multicore processors:

{x = 0 ∧ y = 0}
(x := 1;R1 = y) || (y := 1;R2 = x)

{¬(R1 = 0 ∧ R2 = 0)}

need to add fences which flush the store buffer:

(x := 1;FENCE ;R1 = y) || (y := 1;FENCE ;R2 = x)

efficient flushing policy:
1 Mark concurrent accesses to the same address as shared!
2 Between any shared write and shared read, flush the store buffer!

concurrent accesses: exists an interleaved execution schedule:
consecutive steps by different threads access the same address
at least one of them is modifying its value

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 12 / 30

Hardware Abstraction

Theorem
If the system without store buffers fulfills the flushing policy then it is a

sound abstraction of the system with store buffers

Proofs:
“A Better Reduction Theorem for Store Buffers”. Cohen and
Schirmer, tech report 2009 / ITP 2010
“Store Buffer Reduction with MMUs: Complete Paper-and-pencil
Proof”. Chen, Cohen, and Kovalev, tech report 2013 / VSTTE
2014
“Store Buffer Reduction Theorem and Application”. Geng Chen,
PhD thesis, 2016
“A Simpler Reduction Theorem for x86-TSO”. Jonas Oberhauser,
VSTTE 2015
“Justifying The Strong Memory Semantics of Concurrent
High-Level Programming Languages for System Programming”.
Jonas Oberhauser, PhD thesis, 2018

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 13 / 30

Hardware Abstraction

Eliminating the MMU

Processor in hyp mode

Processor core

Abstract Memory

Processor in virt mode

Processor core

TLBSB

Proof:
“TLB Virtualization in the Context of Hypervisor Verification”
Mikhail Kovalev, PhD thesis, 2013
C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 14 / 30

Hardware Abstraction

Hardware Abstraction

Gate Level Hardware

ISA Model

HW correctness

Abstract Memory ISA

Cache reduction

SB reduction

SC Memory ISA

MMU reduction

Virtual Memory ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 15 / 30

Semantics Stack

Sequential Compiler Correctness (Verisoft style)

C

ISA

compiler
correctness

= consistency point (CP)

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 16 / 30

Semantics Stack

Concurrent compiler correctness

ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 17 / 30

Semantics Stack

Concurrent compiler correctness

ISA

ISA

reordered

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 17 / 30

Semantics Stack

Concurrent compiler correctness

ISA

reordered
ISA

C

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 17 / 30

Semantics Stack

Ownership model:

shared
read-owned

write-
owned

Ownership memory access policy:
local steps: only read read-owned, only write write-owned
shared steps: read if not write-owned by other thread,
write if not owned by other thread
ownership transfer via annotations at shared steps
write-ownership = exclusive ownership = local addresses

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 18 / 30

Semantics Stack

Ownership model:

shared
read-owned

write-
owned

Ownership memory access policy:
local steps: only read read-owned, only write write-owned
shared steps: read if not write-owned by other thread,
write if not owned by other thread
ownership transfer via annotations at shared steps
write-ownership = exclusive ownership = local addresses

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 18 / 30

Semantics Stack

Commutativity of Local Steps
For two steps α, β by different processors were α is local we have:

safe(C, βα) ∧ C
βα7−→ C′ ⇐⇒ safe(C, αβ) ∧ C

αβ7−→ C′

C ′

=

≈p

Cα

Cβ

β

≈p

≈p

≈p

α

C ′′

≈p

≈p

α

β

C

I

II

II

II

III

III

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 19 / 30

Semantics Stack

Commutativity of Local Steps
For two steps α, β by different processors were α is local we have:

safe(C, βα) ∧ C
βα7−→ C′ ⇐⇒ safe(C, αβ) ∧ C

αβ7−→ C′

C ′

=

≈p

Cα

Cβ

β

≈p

≈p

≈p

α

C ′′

≈p

≈p

α

β

C

I

II

II

II

III

III

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 19 / 30

Semantics Stack

safety(C,P):
All computations starting in C are ownership-safe and fulfill safety
property P.

safetyCP(C,P):
All CP block computations starting in C are ownership-safe and
fulfill safety property P.

at most one sharedCP(C):
On all CP block computations starting in C there is at least one
CP between two shared steps of the same processor

Order Reduction Theorem
safetyCP(C,P) ∧ at most one sharedCP(C) =⇒ safety(C,P)

Proof: “Ownership-Based Order Reduction and Simulation in
Shared-Memory Concurrent Computer Systems”
Christoph Baumann, PhD thesis, 2014

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 20 / 30

Semantics Stack

safety(C,P):
All computations starting in C are ownership-safe and fulfill safety
property P.

safetyCP(C,P):
All CP block computations starting in C are ownership-safe and
fulfill safety property P.

at most one sharedCP(C):
On all CP block computations starting in C there is at least one
CP between two shared steps of the same processor

Order Reduction Theorem
safetyCP(C,P) ∧ at most one sharedCP(C) =⇒ safety(C,P)

Proof: “Ownership-Based Order Reduction and Simulation in
Shared-Memory Concurrent Computer Systems”
Christoph Baumann, PhD thesis, 2014

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 20 / 30

Semantics Stack

safety(C,P):
All computations starting in C are ownership-safe and fulfill safety
property P.

safetyCP(C,P):
All CP block computations starting in C are ownership-safe and
fulfill safety property P.

at most one sharedCP(C):
On all CP block computations starting in C there is at least one
CP between two shared steps of the same processor

Order Reduction Theorem
safetyCP(C,P) ∧ at most one sharedCP(C) =⇒ safety(C,P)

Proof: “Ownership-Based Order Reduction and Simulation in
Shared-Memory Concurrent Computer Systems”
Christoph Baumann, PhD thesis, 2014

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 20 / 30

Semantics Stack

safety(C,P):
All computations starting in C are ownership-safe and fulfill safety
property P.

safetyCP(C,P):
All CP block computations starting in C are ownership-safe and
fulfill safety property P.

at most one sharedCP(C):
On all CP block computations starting in C there is at least one
CP between two shared steps of the same processor

Order Reduction Theorem
safetyCP(C,P) ∧ at most one sharedCP(C) =⇒ safety(C,P)

Proof: “Ownership-Based Order Reduction and Simulation in
Shared-Memory Concurrent Computer Systems”
Christoph Baumann, PhD thesis, 2014

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 20 / 30

Semantics Stack

Safety Transfer

safety

safetyCP

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 21 / 30

Semantics Stack

Safety Transfer

safetyCP

safety

safetyC

Must preserve ownership-safety and atomicity of shared accesses!

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 21 / 30

Semantics Stack

C Intermediate Language (C-IL)

C with low-level control flow (gotos & function calls)
pointer arithmetics
function pointers
compiler intrinsics
operational semantics
compiler consistency relation for MIPS86

Formalization:
“Towards the Pervasive Formal Verification of
Multi-Core Operating Systems and Hypervisors Implemented in C”
Sabine Schmaltz, PhD thesis, 2013

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 22 / 30

Semantics Stack

Only C?

OS kernels written in C + Assembler
C functions call assembly procedures
Assembly procedures call C functions
MASM: stack and control flow abstractions
Mixed semantics: C-IL+MASM

Formalization:
“Integrated Semantics of Intermediate-Language C and Macro-
Assembler for Pervasive Formal Verification of Operating Systems and
Hypervisors from VerisoftXT”
Schmaltz and Shadrin, VSTTE 2012

“Mixed Low- and High Level Programming Language Semantics and
Automated Verification of a Small Hypervisor”
Andrey Shadrin, 2012

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 23 / 30

Semantics Stack

Only C?

OS kernels written in C + Assembler
C functions call assembly procedures
Assembly procedures call C functions

MASM: stack and control flow abstractions
Mixed semantics: C-IL+MASM

Formalization:
“Integrated Semantics of Intermediate-Language C and Macro-
Assembler for Pervasive Formal Verification of Operating Systems and
Hypervisors from VerisoftXT”
Schmaltz and Shadrin, VSTTE 2012

“Mixed Low- and High Level Programming Language Semantics and
Automated Verification of a Small Hypervisor”
Andrey Shadrin, 2012

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 23 / 30

Semantics Stack

Only C?

OS kernels written in C + Assembler
C functions call assembly procedures
Assembly procedures call C functions
MASM: stack and control flow abstractions

Mixed semantics: C-IL+MASM

Formalization:
“Integrated Semantics of Intermediate-Language C and Macro-
Assembler for Pervasive Formal Verification of Operating Systems and
Hypervisors from VerisoftXT”
Schmaltz and Shadrin, VSTTE 2012

“Mixed Low- and High Level Programming Language Semantics and
Automated Verification of a Small Hypervisor”
Andrey Shadrin, 2012

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 23 / 30

Semantics Stack

Only C?

OS kernels written in C + Assembler
C functions call assembly procedures
Assembly procedures call C functions
MASM: stack and control flow abstractions
Mixed semantics: C-IL+MASM

Formalization:
“Integrated Semantics of Intermediate-Language C and Macro-
Assembler for Pervasive Formal Verification of Operating Systems and
Hypervisors from VerisoftXT”
Schmaltz and Shadrin, VSTTE 2012

“Mixed Low- and High Level Programming Language Semantics and
Automated Verification of a Small Hypervisor”
Andrey Shadrin, 2012

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 23 / 30

Semantics Stack

C + Interrupts

reordered
ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 24 / 30

Semantics Stack

C + Interrupts

ISA

reordered
Interrupt

reordered

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 24 / 30

Semantics Stack

C + Interrupts

+Interrupts

reordered
Interrupt

reordered
ISA

C+MASM

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 24 / 30

Semantics Stack

Necessary conditions:
transparency: handlers restore the interrupted thread correctly
and do not modify its local data.
independency: handlers do not use the register content of the
interrupted thread.

Formalization:
“Sound semantics of a high-level language with interprocessor
interrupts”. Hristo Pentchev, PhD thesis, 2016
“Order Reduction for Multi-core Interruptible Operating Systems”.
Jonas Oberhauser, VSTTE, 2016

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 25 / 30

Semantics Stack

Necessary conditions:
transparency: handlers restore the interrupted thread correctly
and do not modify its local data.
independency: handlers do not use the register content of the
interrupted thread.

Formalization:
“Sound semantics of a high-level language with interprocessor
interrupts”. Hristo Pentchev, PhD thesis, 2016
“Order Reduction for Multi-core Interruptible Operating Systems”.
Jonas Oberhauser, VSTTE, 2016

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 25 / 30

Semantics Stack

Multi-threading

C+MASM

ISA
write to SP

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 26 / 30

Semantics Stack

Multi-threading

ISA

C+MASM

+ASM

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 26 / 30

Semantics Stack

Multi-threading

ISA

C+MASM

+ASM

primitiveC+MASM

MT

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 26 / 30

Semantics Stack

Multi-threading

ISA

C+MASM

+ASM

primitiveC+MASM

MT

“Provably sound semantics stack for multi-core system programming
with kernel threads”. Artem Alekhin, PhD thesis, 2017

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 26 / 30

Semantics Stack

Semantics Stack

Virtual Memory ISA

Order reduction

IRQ reordering

IRQ@CP ISA

Compiler correctness

C+MASM+ASM

Thread switch correctness

MT C+MASM

CP Block ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 27 / 30

Semantics Stack

ISA Model

Gate Level Hardware

Abstract Memory ISA

SC Memory ISA

Virtual Memory ISA

Kernel Specification

Verified Properties

Parallel C+MASM

MT C+MASM

C+MASM+ASM

IRQ@CP ISA

Parallel C+HW

CP Block ISA

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 28 / 30

Summary

Summing up:

theory for pervasive multicore OS verification
hardware abstraction
semantics stack
many general theorems

Open issues:

MIPS86: out-of-order execution + MMU + SB
semantic stack without reduced MMU?
thread migration
machine-checked theories & proofs
soundness proof for verification with VCC

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 29 / 30

Summary

Summing up:

theory for pervasive multicore OS verification
hardware abstraction
semantics stack
many general theorems

Open issues:

MIPS86: out-of-order execution + MMU + SB
semantic stack without reduced MMU?
thread migration
machine-checked theories & proofs
soundness proof for verification with VCC

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 29 / 30

Summary

The End

Thank You!

Questions?

C. Baumann (KTH Stockholm) Verisoft XT Semantics Stack January 25, ENTROPY 2018 30 / 30

	Hardware Abstraction
	Semantics Stack

